acid rain effects on adirondack streams—

Post on 31-Dec-2016

221 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

U.S. Department of the InteriorU.S. Geological Survey

Fact Sheet 2009-3075 October 2009Printed on recycled paper

Key Findings

Acidrainhasacidifiedsoilsresultingintoxicaluminumin66percentof565assessedstreams.

Diatoms,anenvironmentallysensitivegroupofalgae,weremoderatelytoseverelyaffectedbyacidrainin80percentofassessedstreams.

Aquaticinsectsandrelatedorganismsreferredtoasmacroinvertebratesweremoderatelytoseverelyaffectedin52percentofassessedstreams.

Recoveryfromacidificationhasbeenminimalin11of12Adirondackstreamssampledpreviouslyintheearly1980s.

Thebase-cationsurplus,anewacidificationindexdevelopedforthisproject,indicatedthatnotmorethanone-thirdofmeasuredstreamaciditywasfromnaturalsources.

TraditionallylakeshavebeenthefocusofacidrainassessmentsintheAdirondackregionofNewYork.However,thereisagrowingrecognitionoftheimportanceofstreamsasenvironmentalindicators.Streams,likelakes,alsoprovideimportantaquatichabitat,butstreamsmorecloselyreflectacidraineffectsonsoilsandforestsandaremorepronetoacidificationthanlakes.Therefore,alarge-scaleassessmentofstreamswasundertakeninthedrainagebasinsoftheOswegatchieandBlackRivers;anareaof4,585km2inthewesternAdirondackregionwhereacidrainlevelstendtobehighestinNewYorkState.High flows such as seen in this Adirondack stream tend to have the most acidic stream water.

Acid Rain Effects on Adirondack Streams— Results from the 2003–05 Western Adirondack Stream Survey (the WASS Project)

Purpose of the Western Adirondack Stream Survey (WASS)AcidifiedsurfacewaterswerefirstdiscoveredintheAdirondackregion

ofNewYorkinthe1970s.ComprehensivemonitoringandassessmentofAdirondacklakes,ongoingsincetheearly1980s,hasidentifiedthisregionasoneofthemostaffectedbyacidicdepositioninNorthAmerica.However,assessmentsofstreamacidificationintheAdirondackregionhavebeenlimitedtoalargesurveyintheearly1980sandintermittentdatacollectiononafewstreamsthroughthe1980sand1990s.

Lakechemistryandstreamchemistryaregenerallysimilarwithinaregion,butlakechemistrycanbeanunreliableindicatorofstreamchemistrywhenassessingtheeffectsofacidicdeposition.Streamsaremorepronetoacidificationthanlakesbecausetheyreceivealargerfractionofwaterfromshallowsoilsthatareoftenineffectiveatneutralizingacidity.Lakesarealsoabletobuffertheacidityofstoredwaterbyin-lakeprocesses.

Streamacidificationismostprevalentduringperiodsofhighflow.Thetransientnatureofhighflow,whichcanlastfromafewhourstoafewweeks,resultsinepisodicacidificationthatisdifficulttomeasure.Thechemistryduringbaseflow(periodsbetweenstormsorrapidsnowmeltwhenchemicalconcentrationstendtoberelativelystable)iseasiertomeasure,butunderestimatestheextentoftheproblem.Forexample,inaCatskillMountainwatershed,thetotallengthofacidifiedstreamswasfoundtoincreasefrom16percentatbaseflowto82percentathighflow(Lawrence,2002).Harmfuleffectsonaquaticlifefromepisodicacidificationcanbesimilarorworsethanthosefromchronicacidification(McComickandLeino,1999;Passyandothers,2006).

ToassessthecurrentchemicalandbiologicalconditionsofstreamsintheregionoftheAdirondacksconsideredmostaffected,theWesternAdirondackStreamSurvey(WASS)wasconductedbytheU.S.GeologicalSurvey(USGS)incollaborationwiththeAdirondackLakesSurveyCorporation,theNewYorkStateDepartmentofEnvironmentalConservation,andtheUniversityofTexasatArlington,withfundingsupportfromtheNewYorkStateEnergyResearchandDevelopmentAuthority.ThisprojectisthefirstregionalassessmentofAdirondackstreamssincetheearly1980sandtheonlyassessmentconductedintheUnitedStatestocharacterizeepisodicacidificationonaregionallevel.

Project Objectives

• Developanimprovedmethodfordistinguishingbetweenthechemicaleffectsofacidicdepositionandtheeffectsofacidityfromnaturalsources.

• Determinethecurrentextentofeffectsofacidicdepositiononstreamchemistryandaquaticlifeinthisregion.

• Evaluatetheroleofsoilchemistryasacontrolofstreamchemistry.

• Determinetotheextentpossiblechangesinstreamchemistryoverthepasttwodecades.

Study ApproachThestudywasundertakeninthedrainagebasinsoftheOswegatchie

andBlackRivers,anareaof4,585squarekilometers(km2)inthewesternpartoftheAdirondackregionofNewYork.Atotalof200streamsrepresentingapopulationof565accessiblestreamswererandomlyselectedforsampling.Thepopulationofstreamshadminimalupstreaminfluencesfromlakesandponds.

Figure 1. Collection of a water sample from Buck Creek, Inlet, NY, during spring snowmelt. Ongoing monitoring of flow and water chemistry at this site provided valuable data on how variations in flow affected stream chemistry.

Fivesurveyswereconductedduringspringsnowmelt,summerlowflow,andfallhighflowtoaccountforvariationsinchemistrythatoccurredbothepisodicallyandseasonally.Allsamplesforeachsurveywerecollectedwithin3days(withafewexceptions)duringperiodswhenflowswereeitherelevatedorremainedlow.BuckCreek(drainagearea3.1km2),theonlystreaminthestudyregionmonitoredyear-roundforflowandchemistry,wasusedasanindexstreamtoplaceresultswithinthecontextofvariationsthroughoutthestudy(fig.1).

A New Chemical Index for Measuring AcidificationAssessmentsofacidicdepositioneffectsandrecoveryhave

reliedonANCGandpHastheprimarychemicalindicators.However,bothofthesemeasurementscanbesubstantiallyinfluencedbynaturallyproducedorganicacidity,whichisabundantinmanyAdirondackstreams.Tobetterdistinguishbetweenacidicdepositionandnaturalorganicacidity,anewchemicalindex,termedthebase-cationsurplus(BCS),wasdevelopedinthisproject.TheBCSisbasedonthemobilizationofinorganicaluminum(thetoxicform)withinthesoil,whichdoesnotoccurintheabsenceofacidrain.ABCSvaluelessthan0microequivalentsperliter(µeq/L)instreamwaterindicatesthatthesoilhasbecomesufficientlyacidifiedbyacidraintoenabletoxicformsofaluminumtomovefromthesoilintostreams(fig.2).MeasurementsoftheBCSinstreamsvariedseasonallyandwithchangesinflow.ResultsshowedthatstreamswithaBCSvaluebelow25µeq/LduringanyofthestreamsurveyswerelikelytohavenegativeBCSvaluesatsometimeoverthecourseofagivenyearandwerethereforedefinedaspronetoacidification.

Effects on the Chemistry of Stream and SoilsResultsshowedthat66percentofassessedstreams

werepronetoacidificationbyacidrain(BCSvalueslessthan25µeq/L).Ofthesestreams,approximatelyone-halfwerechronicallyacidifiedandone-halfwereepisodicallyacidified(acidifiedduringhighflows).Theprevalenceofacidifiedstreamsincreasedfromwesttoeastacrossthestudyregion(fig.3).Resultsalsoshowedthat718kilometers(km)oftotalstreamlengthwaspronetoacidificationwithinthestudyregion,althoughmorethan3,000kmofstreamsinthestudyregionwerenotassessedduetoinaccessibility.Naturalsourcesofaciditywerefoundtocontributeonly16to34percentoftheaciditymeasuredbytheBCS.

NeutralizationofacidityisdependentonrapidreactionsinthesoilthatbufferthepHofsoilwaterthroughthereleaseofbases(mostlycalcium)adsorbedtoparticlesurfaces(Lawrence,

ChemicalmeasurementsincludedpHandacid-neutralizingcapacitybyGrantitration(ANCG),themostcommonlyusedmeasuresofacidificationeffects.However,pHandANCG donotdistinguishbetweennaturalorganicacidity,whichiscommoninAdirondackwaters,andthatderivedfromacidicdeposition.Therefore,anewmeasure,termedthebase-cationsurplus(BCS),wasdevelopedtorelateacidicdepositioninputstothebufferingthresholdofsoilsbelowwhichtoxicaluminumismobilizedandenterssurfacewaters.Soilsamplesalsowerecollectedin11smallwatershedstoidentifylinksbetweensoilchemistryandstreamchemistry.

Diatoms,ahighlydiversegroupofalgaewithvariableenvironmentaltolerances,andmacroinvertebrates(insectsandotheraquaticlifesuchaswormsandcrustaceans)wereusedasbiologicalindicatorsinthisstudy.Diatomsampleswerecollectedineachofthe200surveystreamsduringthesurveysconductedinAugust2003,October2003,March2004,andAugust2004.Macroinvertebrateswerecollectedin36streamsthatrepresentedtherangeofacidification.

HistoricalmeasurementsofANCG,pH,andspecificconductancewereavailableintheearly1980sfor18Adirondackstreamsandlakeoutletswithinthestudyregion.Thehistoricalsamplingwasreplicatedinthisstudyduring2003–2005todetermineifwaterchemistrydifferedbetweenthetwoperiods.Becausestreamchemistryisstronglyinfluencedbyflow,datafromtheUSGSstreamgageontheIndependenceRiveratDonnattsburgwereusedtoaccountforflowvariationsduringbothsamplingperiods.

Figure 2. Concentrations of inorganic aluminum (the form toxic to aquatic life) plotted against values of the base-cation surplus to illustrate the threshold below which aluminum is mobilized in soils and transported into streams.

BASE-CATION SURPLUS,MICROEQUIVALENTS PER LITER

-150 -100 -50 0 50 100 150 200

INOR

GAN

IC A

LUM

INUM

,IN

MIC

ROM

OLES

PER

LIT

ER

0

5

10

15

Figure 4. A typical upper soil profile in Adirondack soil. The Oa horizon, comprised mostly of humus-like material, lies directly below the litter and decomposing leaves of the forest floor. The upper B horizon, comprised primarily of mineral matter formed from the breakdown of rocks lies directly below the gray, relatively inert E horizon.

Figure 3. Acidification categories of sites sampled in the March 2004 survey. Sites not acidified had base-cation surplus (BCS) values greater than 25 microequivalents per liter (µeq/L); sites prone to acidification had BCS values greater than 0 µeq/L but less than 25 µeq/L; acidified sites had BCS values less than 0 µeq/L.

!!

!

!!!!

!

!

!

NEW YORK

Old Forge

Boonville

Lowville

CranberryLake

0 10 20 KILOMETERS5

0 20 MILES10

AdirondackPark

Studyarea

Buck Creek index site

Not acidifiedProne to acidificationAcidified when sampled

Village

EXPLANATION

Not sampled in March 2004

75°30' 75°00' 74°30'

43°30'

44°00'

Figure 5. The percent of streams in each of three categories of acid impact, derived from the mean diatom acidification index (ACI) values across the four diatom surveys. ACI represents the proportion of species in a diatom community with preference for acidic conditions. (NON, non-impacted; MOD, moderately impacted; HIGH, highly impacted).

010

403020

50

7060

August 2003

NON MOD HIGH

October 2003

010

403020

50

70

NON MOD HIGH

60

March 2004

NON MOD HIGH

August 2004

NON MOD HIGH

ACIDITY INDEX CATEGORIES

010

403020

50

7060

010

403020

50

7060

PERC

ENT

OF S

TREA

MS

2002).Ifinsufficientcalciumisavailable,toxicformsofaluminumareinsteadreleased.Soilsamplinginselectedwatershedsshowedacloserelationshipbetweentheavailabilityofbasesinthesoil,referredtoasthebasesaturation,andtheBCSinstreamwater.Throughthisrelationship,basesaturationintheupperBhorizonwasestimatedtobeinsufficienttopreventaluminummobilizationin90percentoftheassessedwatersheds.TheupperBhorizonhadbeengenerallyconsideredtheprimarysourceofcalciumforbufferingduringhighflows,butWASSresultsindicatedthattheorganicsoilhorizonclosetothesurface(Oahorizon)playsagreaterrolethantheupperBhorizon(fig.4)intheneutralizationofacidity.TheneutralizingcapacityoftheupperBhorizonhasbeenloweredbythedepletionofcalciumfromacidrain.

Effects on Aquatic lifeAssessmentofdiatomsshowedthatonlythemostacid-

tolerantspecieswerefoundbelowaBCSvalueof10µeq/L,whichapproachesthethresholdformobilizationofinorganicaluminum(BCS=0µeq/L).Thepercentageofstreamsinwhichdiatomcommunitiesweremoderatelyorseverelyimpactedbyacidicdepositionrangedfrom66to80percent(fig.5).Limitedvariationwasobservedinvaluesofthemeandiatomacidificationindex(ACI)amongthefoursurveysdespitetheconsiderablevariationinflow,season,andwaterchemistry.Whereasawatersamplereflectschemicalconcentrationsat

Figure 6. Collection of macroinvertebrates in an Adirondack stream by a scientist in the Stream Biomonitoring Unit of the New York State Department of Conservation.

themomentofcollection,thepresenceorabsenceofadiatomindividualreflectsenvironmentalconditions,includingwaterchemistry,overtheorganism’slifespan.ThesimilarityinACIvaluesfortheOctober2003andMarch2004surveysmostlikelyreflectsacidificationduringtheseveraldaysthatthesurveysoccurred.However,theACIvaluesfortheAugust2004survey,whichwassimilartotheOctober2003andMarch2004surveys,indicatesexposuretoacidificationatsometimepriortothesurvey.Thetimebetweentheexposureandthesurveywastooshortforrecoveryoftheacid-sensitivediatomspecies.Therefore,thediatomresultsreflectedvariationsinstreamchemistryoverapriorperiodofuptoseveralweeks,acharacteristicthatmakesdiatomshighlyvaluableintheassessmentofstreamacidificationwherewaterchemistrycanvarysubstantiallyoverafewhours.IntheAugust2003survey,33ofthe162samplestreamsweredryduetoextremelydryconditions.

Macroinvertebratesamplingof36streams(fig.6)withvaryingchemistrywasusedtocharacterizetherangeofacidificationimpactsonmacroinvertebratecommunitiesandtodefinecategoriesofbiologicalimpactbasedontherelationshipsamongBCS,aluminum,andanewAcidBiologicalAssessmentProfile(acidBAP)indexthatrelatesthemacroinvertebratecommunitytowaterchemistry.UsingtheMarch2005surveyresultsasthemedianchemicalcondition,52percentofthestreamshadmacroinvertebratecommunitiesthatweremoderatelytoseverelyaffectedbyacidrain.

Changes in Stream Chemistry Since the Early 1980sAcomparisonwithhistoricalstreamchemistrydata

showedstatisticallyhigherpHvaluesin2003–2005thanintheearly1980sin8ofthe12streamsand4ofthe6lakeoutlets,butlessthanone-halfofthesestreamsandoutletshadahigher

ANCGin2003–2005thanintheearly1980s.Theamountofchangewasrelativelysmall,andnearlyallthestreamsandoutletsexhibitedepisodicacidificationduringperiodsofhighstreamflowin2003–2005.

TheresultsindicatedthatrecoveryfromacidificationintheseAdirondackstreamsandoutletshasbeenminimal,withtheexceptionofBaldMountainBrookandFlyPondOutlet.However,eveninthesewaters,BCSvaluesduringthemostacidicsamplingconditionsin2003–2005approached0µeq/L;thethresholdformobilizationoftoxicaluminum.TheoverallincreaseinANCGforthe12streamswas13µeq/Lover23years.Thedegreeofchemicalrecoveryobservedinthishistoricalcomparisonprobablyresultedinlittleornobiologicalrecoveryinmostofthestreamsandoutlets.

ConclusionsTheWASS,thelargeststreamsurveyconductedin

theUnitedStatestocharacterizeepisodicacidification,hassubstantiallyexpandedourknowledgeofthecurrentconditionsofAdirondacksurfacewaters.Currenteffortstomodelchangesinsoilandwaterchemistryinresponsetochangesinatmosphericdepositionwillbenefitfromthedatacollectedinthisstudy,butadditionaldatawillbeneededtodocumenttheeffectsofenvironmentalchanges.Futuretrendsinatmosphericdepositionareuncertain,andupwardtrendsintemperatureandprecipitationinthestudyregion(Dello,2007)areexpectedtocontinue(Hayhoeandothers,2007).WASSresultswillbevaluableinthisregardbecausethestudycanberepeatedtoevaluatefuturechangesinstreamchemistryandbiotaunderbothbaseflowandepisodicconditions.

References Cited

Dello,K.,2007,TrendsinClimateinnorthernNewYorkandwesternVermont:Albany,NY.,StateUniversityofNewYork,UniversityatAlbany,M.S.thesis.

Hayhoe,K.,Wake,C.P.,Huntington,T.G.,Luo,L.,Schwartz,M.D.,Sheffield,J.,Wood,E.,Anderson,B.,Bradbury,J.,DeGaetano,A.,TroyT.J.,andWolfe,D.,2007,PastandfuturechangesinclimateandhydrologicalindicatorsintheUSNortheast:ClimateDynamics,v.28,p.238–407.

Lawrence,G.B.,2002,Persistentepisodicacidificationofstreamslinkedtoacidraineffectsonsoil:AtmosphericEnvironment,v.36,p.1589–1598.

McComick,J.H.,andLeino,R.L.,1999,Factorscontributingtofirst-yearrecruitmentfailureoffishesinacidifiedwaterswithsomeimplicationsforenvironmentalresearch:TransactionsoftheAmericanFisheriesSociety,v.128,p.265–277.

Passy,S.I.,Ciugulea,I.,andLawrence,G.B.,2006,DiatomdiversityinchronicallyversusepisodicallyacidifiedAdirondackstreams:InternationalReviewofHydrobiology,v.91,p.594–608.

AcknowledgmentsSupportfortheWesternAdirondackStreamSurveywasprovidedbytheNewYorkStateEnergyResearchand

DevelopmentAuthority(NYSERDA);theU.S.GeologicalSurvey(USGS);theNewYorkStateDepartmentofEnvironmentalConservation,DivisionofAirResourcesandDivisionofFish,WildlifeandMarineResources;andtheAdirondackLongTermMonitoringProgramconductedbytheAdirondackLakesSurveyCorporation.WatershedmonitoringdataatBuckCreekwasprovidedbytheAdirondackEffectsAssessmentProgramconductedbytheRensselaerPolytechnicInstituteincooperationwiththeUSGS.AdditionalsupportfortheBuckCreekWatershedStudywasprovidedbyNYSERDA.

Additional information on the Western Adirondack Stream Survey can be found in the following publications:Baldigo,B.P.,Lawrence,G.B.,Bode,R.W.,Simonin,H.A.,Roy,K.M.,andSmith,A.J.,2009,ImpactsofacidificationonmacroinvertebratecommunitiesinstreamsofthewesternAdirondackMountains,NewYork,USA:EcologicalIndicators, v.9,p.226–239.

Lawrence,G.B.,Roy,K.M.,Baldigo,B.P.,Simonin,H.A.,Capone,S.B.,Sutherland,J.S.,Nierswicki-Bauer,S.A.,andBoylen,C.W.,2008,ChronicandepisodicacidificationofAdirondackstreamsfromacidrainin2003–2005:JournalofEnvironmentalQuality,v.37,p.2264–2274.

Lawrence,G.B.,Roy,K.M.,Baldigo,B.P.,Simonin,H.A.,Passy,S.I.,Bode,R.W.,andCapone,S.B.,2008,Resultsfromthe2003–2005westernAdirondackstreamsurvey:NewYorkStateEnergyResearchandTechnologyAuthorityFinalReport08–22(November2008),variouslypaged,availableonlineathttp://www.nyserda.org/programs/Environment/EMEP/finalreports.asp.

Lawrence,G.B.,Sutherland,J.W.,Boylen,C.W.,Nierzwicki-Bauer,S.A.,Momen,B.,Roy,K.M.,Baldigo,B.P.,Simonin,H.A.,andCapone,S.B.,2007,Acidraineffectsonaluminummobilizationclarifiedbyinclusionofstrongorganicacids:EnvironmentalScienceandTechnology,v.41,p.93–98.

By Gregory B. Lawrence1, Karen M. Roy2, Barry P. Baldigo1, Howard A. Simonin3, Sophia I. Passy4, Robert W. Bode3, and Susan B. Capone5

1 U.S. Geological Survey.

2 New York State Department of Environmental Conservation.

3 Retired, formerly New York State Department of Environmental Conservation.

4 The University of Texas at Arlington.

5Adirondack Lakes Survey Corporation.

For more information on the USGS--the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

For additional information write to:New York Water Science CenterU.S. Geological Survey425 Jordan RoadTroy, NY 12180

Information requests:(518) 285-5602or visit our Web site at:http://ny.water.usgs.gov

top related