a cyclopropane fragmentation approach to heterocycle assembly

Post on 10-Feb-2016

45 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

A Cyclopropane Fragmentation Approach to Heterocycle Assembly. Kevin Minbiole James Madison University August 11, 2005. Outline. I. Introduction to Cyclopropanes and Heterocycle Formation Strategies II. Proof of Concept: Oxepane Synthesis III. Progress Towards Nitrogenous Heterocycles - PowerPoint PPT Presentation

TRANSCRIPT

A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Kevin MinbioleJames Madison University

August 11, 2005

Outline

I. Introduction to Cyclopropanes and Heterocycle Formation Strategies

II. Proof of Concept: Oxepane Synthesis

III. Progress Towards Nitrogenous Heterocycles

IV. Radical Strategies

V. Future Directions

Outline

I. Introduction to Cyclopropanes and Heterocycle Formation Strategies

II. Proof of Concept: Oxepane Synthesis

III. Progress Towards Nitrogenous Heterocycles

IV. Radical Strategies

V. Future Directions

Cyclopropane Strain and Reactivity

Cyclopropane has significant ring strain.

Cyclopropanes have pi character.

Coulson-Moffitt ModelBent Bonds

Walsh Model

Ring Strain ~ 27.5 kcal/mol

Alkenes and Cyclopropanes

“Virtually every reaction that an alkene undergoes has its counterpart in the repertoire of transformations possible with cyclopropanes.”

OH

E+

OH

E+O

E

O

E

O

O

Nu

Nu

Nu O

ONu

Reactivity towards nucleophiles Reactivity towards electrophiles

Hudlicky, T.; Reed, J. W. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I. Eds.; Pergamon: Oxford, 1991; Vol. 5, p 901.

Alkenes and Cyclopropanes

Carreira’s approach to spirotryprostatin B

Cossy’s approach to zincophorin

NBn

O MgI2

NR

R

NBn

OMgI

I

NBn

O

I

R

NR

NBn

O

NR

R

NH

O

N

N

O

O H

spirotryprostatin B

Marti, C.; Carreira, E. M. J. Am. Chem. Soc. 2005, ASAP.Cossy, J.; Blanchard, N.; Defosseux, M.; Meyer, C. Angew. Chem. Int. Ed. 2002, 41, 2144.

OH

O

OHBzO O

O

OHBzO

H HHgBr

OH3CO

O

OHHH

Hg(OTf)2;

KBr

85% zincophorinH

Alkenes and Cyclopropanes

OH

E+

OH

E+O

E

O

E

OH

E+

O

E

Could this be used to generate heterocycles?

Reactivity towards electrophiles

Oxocarbenium-Based Heterocycle Syntheses

OH RCHO

O

O

O

O

O

O

O

O

LA

O

O LA

O

O

O LA

O

OLA

O

O

O

O

O

O

OH

O

X

Petasis

This work

Prins

Prins-Pinacol

Analogous modes of cyclization

LA

LA

LA

LA

X

Zimmerman-Traxler Cyclization

O

OR R

O

OR R

OR

O LA

R

OR

O LA

R

OR

O

R

OR

O

R

Petasis

This workOMO

H

R R

OMO

H

R R

OH

OHOH

OHInitial target

LA

LA

The Kulinkovich Cyclopropanation

R1 OR2

O

H3C CH3

TiRO

ROTi

RO

RO

XMgO RTi

RO

RO

ROO

TiRO

RO

ROR

O

ORR

R1 OH

TiRO

RO

R

TiRO

RO

XMgOR

R

R

Kulinkovich Reaction

Ti(O-iPr)4 (0.1 eq)EtMgBr (3 eq)THF/Et2O (4:1)

Ti(OR)4+

2 EtMgBr

EtMgBr EtMgBr

Kulinkovich, O. G. Chem. Rev. 2003, 103, 2597.

Cyclopropanation Yields

OH

OEt

O

OH

OEt

O

OH

OH

OH

OH

OH

TiCl(O-iPr)3 (1 eq)EtMgBr (4 eq)THF/Et2O (4:1)

51%

Ti(O-iPr)4 (0.1 eq)EtMgBr (3 eq)THF/Et2O (4:1)

80%

TiCl(O-iPr)3 (1 eq)EtMgBr (4 eq)THF/Et2O (4:1)

51%

OO OH

OH

Ti(O-iPr)4 (0.1 eq)EtMgBr (3 eq)THF/Et2O (4:1)

<30%

OH

O

O

Cho, S. Y.; Cha, J. K. Org. Lett. 2000, 2, 1337-1339.

Outline

I. Introduction to Cyclopropanes and Heterocycle Formation Strategies

II. Proof of Concept: Oxepane Synthesis

III. Progress Towards Nitrogenous Heterocycles

IV. Radical Strategies

V. Future Directions

Initial Attempts at Oxepane Formation

OH

OH O

O

Ph

PhCHO, Na2SO4CH2Cl2, 0.1M

M(OTf)3,-78 oC

M = Al, Bi, In

Initial Attempts at Oxepane Formation

OH

OH O

O

Ph O

O

Ph

PhCHO, Na2SO4CH2Cl2, 0.1M

30-50%

M(OTf)3,-78 oC

warm to

0 oC

M = Al, Bi, In

Softer Lewis acids (CuSO4, ZnCl2, SnCl2) stop at acetal

Mechanism of Oxepane Formation

OH

OHO

O

Ph O

O

Ph

LA

O Ph

OLA

O

O

Ph

PhCHO, Na2SO4CH2Cl2, 0.1M

Al(OTf)30 oC

Mechanism of Oxepane Formation

OH

OH

OH

OH

O

O

Ph

O

O

Ph Ph

O

O

Ph

LA

OPh Ph

OLA

O Ph

OLA

Ph

OLA

O

O

Ph

OPh

PhCHO, Na2SO4CH2Cl2, 0.1M

Al(OTf)30 oC

PhCHO, Na2SO4CH2Cl2, 0.1M

Al(OTf)30 oC

- PhCHO

69%

Stereochemistry of Oxepane Formation

OH

OH

O

O

PhH H

O

O

Ph

H HO

O

Ph

O

O

Ph

PhCHO, Na2SO4CH2Cl2, 0.1M

30-50%

M(OTf)3,-78 oC

warm to

0 oC

10% nOe 10% nOe

M = Al, Bi, In

Zimmerman-Traxler Cyclization

O

OR R OR

O LA

R OR

O

ROMO

R R

Initial Limitations of Oxepane Formation

OH

OH

O

O

PhH H

OH

OH

O

O

Ph

O

O

Ph

H HO

O

Ph

X

O

O

Ph

O

O

Ph

PhCHO, Na2SO4CH2Cl2, 0.1M

30-50%

M(OTf)3,-78 oC

warm to

0 oC

10% nOe 10% nOe

M = Al, Bi, In

PhCH2CH2CHO, Na2SO4

CH2Cl2, 0.1M

M(OTf)3,-78 oC

M = Al, Bi, In

Two-Lewis Acid System

R1

OH

OH O

O

R1 R2

R2CHO, Na2SO4Al(OTf)3, -10 oC, 1 h;

50-70%

then TiCl4, 45 min

No problems associated with coexistence of two Lewis acids

Yields and Scope of Oxepane Formation

RCHO

OH

OH

OH

OH

OH

OH

O

H Ph

O

H

O

O

PhO

O

O

O

O

O

Ph

O

O

O

O

Ph

O

H

O Ph

O

O Ph

O

O Ph

O

diol

51% 55%

71%71%

70%62%

55%

66%

69%

O'Neil, K. E.; Kingree, S. V.; Minbiole, K. P. C. Org. Lett. 2005, 7, 515-517.

Appearance of Trans Oxepane

R

OH

OH

O

O

R

O

O

RM

O

O

R

O

O

R

PhCHO, Na2SO4Yb(OTf)3 (1.0 eq);

then TiCl4(1.1 eq)

TiCl4

0 oC, 45 min

~1:1

R YieldPr 61%Me 70%iPr 55%

Inclusion of Sidechain Functionality

O

H

O

H

NO2

RCHO

OH

OH

OH

OH

OH

OH

O

O

O

O

O

O

O

O

O

O

O

O

diol

34%

30%

30%

26%

36%

36%

NO2

NO2

NO2

Inclusion of Sidechain Functionality

O

O

O

OCH3

O

H OBn

O

O

OBn

O

OCH3H

O

47% 15%

Certain chelating groups are tolerated…

Inclusion of Sidechain Functionality

O

O

R O

O

R

O

HOCH3

O

O

HOBn

ProductiveChelation

No rearrangement No rearrangementNo rearrangement

Non-ProductiveChelation

O

HN

OM

R M O

R

Certain chelating groups are tolerated…but others fail to rearrange to oxepane

Reaction Optimization

Alternate Lewis acids Zirconium tetrachloride

Alternate drying agents Molecular sieves

Alternate solvent systems More or less polar solvents

Outline

I. Introduction to Cyclopropanes and Heterocycle Formation Strategies

II. Proof of Concept: Oxepane Synthesis

III. Progress Towards Nitrogenous Heterocycles

IV. Radical Strategies

V. Future Directions

Nitrogen Analogs: Azepines

NH

OHN

O

R N

O

R

RCHO, Na2SO4

Lewis Acid(s)

R

R R

Analogous reaction in nitrogenous heterocycles?

Nature of Protecting Group on Nitrogen

NH2

OH

NH

OH

Boc

NH

O

Ph

N

O

PhBoc

NH

O

Ph

LA

N

O

Ph

LA

Boc

NH

Ph

OLA

N Ph

OLA

Boc

NH

O

Ph

N

O

PhBoc

PhCHO, Na2SO4

Lewis Acid(s)

PhCHO, Na2SO4

Lewis Acid(s)

Boc =O

O

Assembly of Azepine Precursor

OEt

NH2 O

OEt

NHBoc

O

OH

NHBoc

Boc2O;

KulinkovichCyclopropanation

>99%

Ti(O-iPr)4 (1 eq)EtMgBr (4 eq)THF/Et2O (4:1)

72%

Cyclization attempts

OH

NHBoc

N OH

O

OH

ZrCl4LaCl3TiCl4BBr3

PhCHO, LANo Reaction

Brönsted Acids employed:HCOOHTFApTSA

Lewis Acids employed:Al(OTf)3Yb(OTf)3In(OTf)3Bi(OTf)3

Cyclization Attempts with Free Amine

OH

OH

OH

NH2

OH

N3

NH

O

Ph

PhCHO, LA

PPh3, DIAD,Zn(N3)3-pyr2

60% OH

NH2LAH or NaBH4

or PPh3/H2O

Amino alcohol not yet isolated

Outline

I. Introduction to Cyclopropanes and Heterocycle Formation Strategies

II. Proof of Concept: Oxepane Synthesis

III. Progress Towards Nitrogenous Heterocycles

IV. Radical Strategies

V. Future Directions

Radical Cyclization

OM

O

O M

O

Heterolytic

Homolytic

Radical Cyclization

OM

O

O M

O

Heterolytic

HomolyticOH [O]

Heterolysis is known for cyclopropanols with mild single electron oxidants (e.g., Mn3+ and Fe3+).

Radical Cyclization Utilizing Azide

IN3

IN3

NH

H

NTs

N N N

N

NN2

1. Bu3SnH, AIBN PhH, , 2h

2. TsCln

n n = 1, 88%n = 2, 50%

Kim, 1994

n

- N2

Kim, S.; Joe, G. H.; Do, J. Y. J. Am. Chem. Soc. 1994, 116, 5521-5522.

Radical Cyclization Towards Heterocycles

OH

N3 N3

O

HN

O

Mn(pic)3

orFeCl3

- N2

solvent

pic =N

O

O

Radical Cyclization Towards Functionalized Heterocycle

OH

N3 N3

O

HN

O

Mn(pic)3

orFeCl3

RR R

- N2

solvent

pic =N

O

O

Progress Towards Piperidine

N3 O

X

OH

N3 N3

O

HN

O

Not observed

X = H, OH, OOH, Cl

Oxidant

DMF or benzene

Oxidants Used:FeCl3Fe(NO3)3Mn(OAc)3Mn(pic)3

Recourse for Piperidine

OO

PhMgBr

OH

N3Ph

OH

OH Ph

N3

O

Ph

HN

O

Ph

Ti(O-iPr)4 (0.1 eq)THF/Et2O (4:1)

Oxidant

Towards the Pyrrolidine

R3NR3

R1 R2

O[O]

RO

OR'OH

RO

OR'NH2

RO

OR'N3

R

ROH

N3

R

Tf2O, NaN3;

Cu(II)SO4

Kulinkovich Reaction

Ti(Oi-Pr)4 (0.1 eq),EtMgBr, THF/Et2O

Tf2O, pyr;

NaN3, DMF, 24h

Alper, P. B.; Hung, S.-C.; Wong, C.-H. Tetrahedron Lett. 1996, 6029-6032.

Outline

I. Introduction to Cyclopropanes and Heterocycle Formation Strategies

II. Proof of Concept: Oxepane Synthesis

III. Progress Towards Nitrogenous Heterocycles

IV. Radical Strategies

V. Future Directions

Alternative Ring Size

OHOHR

OO

R

R

RCHOO

R

MO

HR O

O

R R

Lewis AcidLewis Acid

Sites of Functionalization on Oxepane Ring

OH

OH O

O

O

O

R

RR

OH

OH O

O

O

OR

R

4 diastereomers 4 diastereomers

O

OR

R+

Aldehyde, LA

Aldehyde, LA

Cyclopropane Functionalization via Cyclopropene

OH

R

OH

OH

OH

R

FOTIPS

R

OTIPS

OR R

R

OM

OTIPS

M

OTIPS

R

OR R

RO

OTIPS

N2

R

Chiral Rh(II)

RCHO, LA

O

O

R

Doyle, M. P.; Protopopova, M.; Müller, P.; Ene, D.; Shapiro, E. A. J. Am. Chem. Soc. 1994, 116, 8492.Müller, P.; Granicher, C. Helv. Chim. Acta 1995, 78, 129.

Fox, J. M.; Yan, N. Curr. Org. Chem. 2005, 9, 719.

Natural Product Total Synthesis

NH

O

H3CO OHO

N

O H

O

O

HH3C

Piperidines Azepines

TetrahydropyransOxepanes (7) and Oxocanes (8)

Coniine SpectalinineStemoamide

Centrolobine Lauthisan

NH

H3C

OH

OH

11

O

Cl BrH H

Isolaurepinnacin

Conclusions

Cyclopropanes can be utilized as homo-alkenes to prepare heterocycles

A facile two-step procedure has been developed to prepare oxepanes with excellent stereoselectivity

Further substitution and alternate heterocycles are being explored

Radical cyclization promises another method to deliver heterocycles from cyclopropanols

Epilogue on Undergraduate Teaching and Research

Quality of Life

Opportunities for Funding

Satisfaction Direction of research Students

The Group

Kerry O’Neil, JMU ’05 Seth Kingree, JMU ’06 Cambria Baylor, JMU ’06

Andrew Blanchard, JMU ’07 Steve Andrews, JMU ’07 Erik Stang, JMU ’06

Where’s James Madison University?

Acknowledgements

NMR: Tom Gallaher and Jeff Molloy

Nebraska Center for Mass Spectrometry

Drs. Kevin Caran and Scott Lewis

James Madison University

Future Direction: Cyclopropane Functionalization

OTIPSTIPSO

N2

CO2R

O

CHORCO2R

OTIPS

CO2R

TIPSO

O R R

OH

CO2R

HO

O

R

OHRO2C

Chiral Rh Cat

RCHO, LA

TBAF, -78 oC

R

Other Backups: Discrete Homoenolate

X

OTMS

R

R

X

O

R

R

M

X RR

O M

X

R

R

O

R

Metals Employed:AgI, AuI, CuII,HgII, PdII,PtII, SnIV

Other Backups: Radical

N

HO

R

RN

O

R

R

N

R

R

O

R

CO2RO

HO

R R

CO2RO

O

O

CO2R

RO

Aza Cope Possibility

NR

Ph

OLA

NR

O

Ph

LA

NR

O

Ph

Modified Point of Attachment

R

OH

O

OR2R1

R

OH OHR1

OMO

H

H

H

R RO

H

HH

R R

R1 OR

O OLA

R R1

R3

R

O Ti(Oi-Pr)n

OR1

OR

R3

R

OH OHR1Ti(Oi-Pr)4, PhCH3, rt;then c-C5H9MgCl, THF

15 examples42-68% yield3.5-12.2:1 ds

Cha, 2002

R3CHO, LA

Previous Modified Connectivity

H

H

Precedent For Acyliminium Formation

Hsung Precedent

NHBocO

OTBS

R

NBoc

OTBS

R

NBoc

OTBS

R

OHCO

HCO2H

THFToluene

R = hexyl

61%Hsung, 2004

top related