23 july 2002

Post on 24-Feb-2016

100 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

23 July 2002. Brian Dennis NASA/GSFC 26 July 2013. 23 July 2002. 23 July 2002. 23 July 2013 A1 and A3 Attenuator States. Note 3 distinct peaks. 23 July 2002. 2vth + thick + broad Gaussian at 9.13 keV. 23 July 2002 First A1 to A3 transition. - PowerPoint PPT Presentation

TRANSCRIPT

23 July 2002

Brian DennisNASA/GSFC26 July 2013

23 July 2002

23 July 2002

23 July 2013A1 and A3 Attenuator States

Note 3 distinct peaks

23 July 2002

2vth + thick + broad Gaussian at 9.13 keV

23 July 2002First A1 to A3 transition

Count-flux spectrum below ~6 keV stays flat independent of slope in the 11 to 20 keV range where the K-escape events originate.

For K-escape to explain the counts below 5 keV, count flux at 3 keV should depend on count flux at 14 keV count flux at 5 keV should depend on count flux at 16 keV

Detector Response MatrixCompton minimum = 0.01 x photopeak amplitude

A1 Attenuator state A3 Attenuator state

Detector Response MatrixCompton minimum = 1% of photopeak amplitude

A1 Attenuator state A3 Attenuator state

Compton MinimumMinimum Energy = 5 keV

23 July 2002Minimum Compton Continuum Probability (MCCP)

MCCP = 1.e-4 MCCP = 5.e-5

23 July 2002Minimum Compton Continuum Probability (MCCP)

MCCP = 5.e-5

23 July 2002Late A3 to A1 Transition

K-Escape and Compton ChangesAttenuator State A1

Interval #5

K-Escape ChangesA3 Attenuator State

Interval 6 Interval 31

Plotted absolute value of K-escape change since it is an increase in counts at energies below the germanium K-edge at 11 keV and a decrease above 11 keV.

K-escape and Compton ChangesInterval 32

K-escape tweak = 1.1Compton minimum = 0.0

Germanium K-shell Energies

• Kα1 – 9.88 keV• Kα2 – 9.86 keV• Kβ1 – 10.98 keV• Kβ2 – 11.10 keV• Kβ3 – 10.975 keV• Kβ5 – 11.074 keV• K-edge – 11.1 keV• drm_mod(0) = 0.1• drm_mod(1) = -0.19

kescape_tweak = 5

Germanium K-edge Energy

• K-alpha – 9.88 keV• K-edge – 11.1 keV• kescape_tweak = 1.1• drm_mod(0) = 0.6• drm_mod(1) = -0.45 keV

Energy Calibration

23 July 2002Compton_min = 1.e-4

23 July 2002Compton_min = 4e-3

23 July 2002Compton_min = 0.01

23 July 2002A3 to A1 Change

23 July 2002 Compton_min = 0.01K-escape_tweak = 1.1

23 July 2002

Failure to fit Interval #6

kescape_tweak = 1.4

Excess counts below 6 keV

23 July 2002Detector #4

Multitherm_powThick2Albedokescape_tweak = 1.4

10 keV peak FWHM <0.4 keVFe

abu

ndan

ce

(frac

tion

of c

oron

al)

23 July 2002Detector #4

Multitherm_powThick2Albedokescape_tweak = 1.4

10 keV peak FWHM <2 keVFe

abu

ndan

ce

(frac

tion

of c

oron

al)

DEM at 2 keV

Max. Temperature

DEM power-law index

Gaussian Line Intensity

DEM at 2 keV

23 July 20013

23 July 2002thick2_norm

Flux at 50 keV

Delta1

Elow in keV

Flux at 50 keV

Fe Abundance

23 July 2002Fe Abundance

23 July 2002Ireland et al. ApJ, 769:89, 2013

• Interval: 00:30:00–00:30:20.250 UT• Energy: 15 to 500 keV• Energy bins: 90• Detector #4

Parameter Values Ireland et al. ApJ, 769:89, 2013

Thermal plasma

EM 1049 cm−3 2.16 Free

Temp. (kT) keV 3.18 Free

Abundance Coronal 1 Fixed

Non-thermal electrons

A, flux at Ep 1035 s−1 keV−1 0.028 FreeEc keV 32.0 FreeEp keV 50 FixedEb keV 256 FreeEh keV 32,000 Fixedδ1 3.40 Freeδ2 3.92 Free

Nuclear template

Normalization photons cm−2 2.11 Fixed

top related