1999 evolution and diversity of mammalian sodium channel genes.pdf

Post on 03-Apr-2018

215 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

7/28/2019 1999 Evolution and Diversity of Mammalian Sodium Channel Genes.pdf

http://slidepdf.com/reader/full/1999-evolution-and-diversity-of-mammalian-sodium-channel-genespdf 1/9

7/28/2019 1999 Evolution and Diversity of Mammalian Sodium Channel Genes.pdf

http://slidepdf.com/reader/full/1999-evolution-and-diversity-of-mammalian-sodium-channel-genespdf 2/9

7/28/2019 1999 Evolution and Diversity of Mammalian Sodium Channel Genes.pdf

http://slidepdf.com/reader/full/1999-evolution-and-diversity-of-mammalian-sodium-channel-genespdf 3/9

a ) i n t he hum a n a nd m ous e genes (P l um m er et al., 1998),om pa r e d w i t h a n a v e ra g e v a l ue of 86% f or h u m a n a n d

mouse coding seq uences (Ma ka lowski et al., 1996). P hosphor-lat ion of residues w ithin t he cytoplasmic loops is known toa v e di st i nct effect s on t he kinet i cs of di ffer ent cha nnel sMurphy et al., 1996; Sm ith a nd G oldin, 1996; Frohnw ieser et l . , 1997).

HumanSCN6A and MouseScn7a  Appear

to be Orthologs of a Single Gene

SC N 6 A a n d SC N 7 A wer e gi ven di ffer ent gene s y m b ol swhen they were mapped in human and mouse, respectively

George et al., 1994; Potts et al., 1993). How ever, the un usua lroperties t hey sha re a nd the la ck of evidence for t wo genes

within any one species suggest that SC N 6 A a nd SC N 7 A a r ec t ua l l y t he hum a n a nd m ous e or t hol ogs of a s i ngl e l ocus .

SC N 6 A i n hum a n a nd SC N 7 A in mouse ar e expressed in both

eur ona l a nd nonneur ona l t i s s ues , unl i ke t he ot her c ha n-els. Neither SC N 6 A nor SC N 7 A generates sodium currents

when the cDNAs are expressed in Xenopus oocytes (Felipe et l . , 1994; Akopia n et al ., 1997). The protein sequence of

SC N 6 A a n d SC N 7 A diverges from the other family membersby 50%, including cha nges in tw o critical d omains a ffectingvoltage sensitivity and ion selectivity (Gautron et al., 1992;George et al., 1992; Felipe et al., 1994; Akopian et al., 1997).The 68% amino acid identity of human SC N 6 A a nd m ous eSC N 7 A is consistent with the expecta tion for orthologousgenes (Felipe et al., 1994). However, this gene appears to bed iv er g in g m u ch m or e r a p id ly t h a n t h e ot h e r ␣ subunits.Human SCN8A and mouse SCN8A, for example, are 98.5%identical in a mino a cid sequence (Plummer et al., 1998).

Alternative Splicing of Neuronal SodiumChannels

Three si tes of a l ternat ive splicing furt her increase t he di-versity of neuronal sodium channel isoforms in mammaliantissues. These isoforms were first identified as cDNAs andlater explained by splicing mechanisms. The a lternat ive ex-ons 5N a nd 5A ar e separ at ed by less tha n 100 bp and encode

segments S 3 and S 4 of domain I in SC N 2 A, SC N 3 A, SC N 8 A,

a n d S C N 9 A ( S a r a o et a l . , 1991; G usta fson et a l . , 1993;Belcher et al ., 1995; Plummer et al ., 1997). Expr ession ofexon 5N pr edom i na t es i n t he neona t a l per i od, a nd exon A

FIG. 2. The ma mma lia n s odium cha nnel ␣ subunit genes are located in four paralogous chromosome regions. The ancestral chordate

enome is proposed to contain one copy of each gene listed a t the left . D uplicat ion events generated four para logous chromosome segments.

ndependent duplication, deletion, and translocation events subsequently altered the gene content of the paralogous segments and dividedhe region containing H O X A a nd SCN5A into three unlinked segments. The chromosomal locations of the corresponding mouse linkageroups are provided in Table 1. G enes are listed in alpha betical order because t heir physical order is not completely known. G ene symbols:

QP, a qua porin; C O L A , collagen ␣; C A C N B , calcium channel ␤; E R B B , a via n eryt hrobla s t ic leukemia vira l oncogene homolog; E V X ,ven-skipped homeobox; HOX, antennapedia -like homeobox; I T G A , integrin ␣; I T G B , integrin ␤; K R T , kera t in gene clust er ; N E U R O D ,

eurogenic differentia tion; N F E , nuclear factor erythroid; RAR, retinoic acid receptor; S C N A , sodium cha nnel ␣ subunit ; SLC4, solute carrieramily 4, anion exchanger; WNT, wingless -related. L inkage dat a from OMIM (Online Mendelian Inherita nce in Ma n, ht tp://ww w.ncbi.nlm.ih.gov/omim); TTX, tet rodotoxin; S , sensit ive, R, r esista nt .

325E V OL U TI O N O F TH E S O D I U M C H AN N E L G E N E F AM I L Y

7/28/2019 1999 Evolution and Diversity of Mammalian Sodium Channel Genes.pdf

http://slidepdf.com/reader/full/1999-evolution-and-diversity-of-mammalian-sodium-channel-genespdf 4/9

redominat es in th e a dult . E xon 5N a nd exon 5A differ by aonsistent amino acid difference: the residue is uncharged inhe neona t a l i s ofor m a nd nega t i v el y c ha r ged i n t he a dul tsoform (Fig. 1, a rrow). The functiona l consequence of t hisonserved a mino acid substi tution is not known.

The alternative exons 18N and 18A of SC N 8 A encode the3 a nd S 4 s egm ent s of dom a i n I I I (P l um m er et al., 1997).

These exons share several features with exons 5A and 5N.oth pa irs of exons encode the S3 an d S4 segments of domain

II. Both pairs of exons are developmentally regulated withxon N expressed in ea rly d evelopment a nd exon A expressedn a dult . The genomic orga nizat ion of both pairs of exons isi m i l a r , wi t h t he ups t r ea m , neona t a l exon s epa r a t ed fr omhe adult exon by a small intron of 100 to 500 bp. Surpris-ngly, exon 18N of SC N 8 A contains a stop codon that wouldesult in synt hesis of a truncat ed tw o-domain protein (Plum-

m er et al., 1997). The fun ction of such a tr unca ted protein isnclear. Similar transcripts of SC N 1 A a nd SC N 8 A contain-

ng stop codons in d omain II I h ave been isolat ed from ast ro-ytes and neuroblastoma cells (Oh and Waxman, 1998).

Finally, alternative splicing in the first cytoplasmic loop ofSC N 1 A a nd SC N 8 A gener a t es t w o t r a ns c r ipt s t ha t di ffer b y10 amino a cids, due t o uti l ization of a l ternat ive splice donorsites in exon 10B (Schaller et al., 1992; Dietrich et al., 1998;Plummer et al ., 1998). In contra st to the neuron-specifi cgenes , no a l t er na t e t r a ns c r i pt s of SC N 4 A or SC N 5 A h a v ebeen identified.

Effects of Interaction with AuxiliarySubunits

Additiona l functiona l diversity of sodium cha nnels is gen-erated by interaction with the auxil iary subunits ␤1 a nd ␤2,encoded by the genes SC N 1 B  a nd SC N 2 B  (Ta ble 1). B oth ␤1a nd ␤2 cont a i n a s ingl e t r a ns m em br a ne s egm ent , a n i nt r a -cellular C-terminal domain, a nd a n extra cellular N-terminaldomain with an immunoglobulin-like (Ig) fold (Fig. 1), buttheir amino acid sequences are not related.

SC N 1 B  is expressed in neurons, skeleta l muscle, a nd ca r-dia c muscle (Isom et al., 1992). Coexpression of SC N 1 B  w i t h␣ s ubuni t s fr om b r a i n a nd s kel et a l m us cl e a cceler a t es t heki net i c s of c ha nnel a c t i v a t i on a nd i na c t i v a t i on, a l t er s t hevolta ge dependence of ina ctivat ion, an d increases peak cur-rent (Isom et al., 1992; Patton et al., 1994). Mut a tion of th e Igfold a bolished t he effect of SC N 1 B  on ␣ subunit ina ctivat ion(McCormick et al., 1998; Wa lla ce et al., 1998). Coexpressionof SC N 1 B  w i t h t h e c a r d ia c ␣ subunit SC N 5 A increases so-dium current but does not al ter channel kinetics (Qu et al.,

1995).SC N 2 B is expressed only in the nervous system (Wollner et 

al ., 1987; Isom et al., 1995) and is covalently bound to the ␣

subunit by disulfide bonds (Messner and Catterall , 1985).SC N 2 B  also conta ins a n extra cellular Ig fold w ith h omologyto the neural cell adhesion molecule contactin (Isom et al.,

1995) and may play a role in response to extracellular sig-nals. Coexpression of SC N 2 B  alters the voltage dependenceand kinetics of inactivation of ␣ subunits and enhances lo-calizat ion in t he cell membra ne (Isom et al., 1995).

SodiumChannel Mutations and Inherited Disease

F our s odium c ha n nel ␣ s u b u n it s a n d o n e ␤ s u b u n it h a v eb ee n a s s oc ia t e d w i t h i n h er i t e d d i s ea s e i n h u m a n p a t i e n t sa n d m ous e m ut a nt s (Ta b l e 3 ). The s i t e-di r ect ed m ut a t i onof S CN 2 A, G AL8 79 -8 81 Q3, r es ul t s i n s l ow ed c ha nn el i n-a c t i v a t i o n ( K o n t i s a n d G o l d i n , 1 9 9 3 ) , a n d e x p r e s s i o n i n

TABLE 2

Conservation of Various Protein Domains i n So-dium C hannels from Four Paralogous ChromosomeSegments

SCN8A domain

%a mino a cid s equence ident it y t o

SCN 2A SCN 4A SCN 5A

D oma in I 79% 75% 69%C y t opla smic loop I /I I 51% L ow 42%

D oma in I I 93% 89% 80%C y t opla smic loop I I /I I I 65% 41% L ow  D oma in I I I a nd I V 86% 84% 81%

Note. P e r ce n t a g e a m i n o a c id s eq u e nce i d en t i t y w a s ca l cu l a t edus ing t he B ESTFI T progra m in t he GCG pa cka ge. L ow , dif ferentnumbers of exons a nd high degree of divergence ma ke a lignmentu n r el ia b l e. G e n B a n k c it a t i o n s: h u m a n S C N 8 A , AF049617; r a t

Scn2a, X03639; human SCN4A, L04236; human SCN5A, M77235.

FIG. 3. P hylogenet ic rela t ions hip of ma mma lia n volt a ge-ga t edodium cha nnel ␣ subunit genes. Pr otein sequences from rodent a nd

Drosophila  sodium channel genes were aligned using CLUSTAL W

ersion 1.6 softwa re (Thompson et al. , 1994). The aligned regiononta ins 1154 a mino a cids (approximately 2

3 of the total) correspond-ng to rat Scn1a residues 105–273, 329–423, 763–992, and 1215–874 (GenB an k Accession N o. X03638). The diver gent portions of t he

N-t ermina l region, C-t ermina l region, a nd cyt opla s mic loops t ha t

ould not be aligned were not included in the analysis. The alignedequences w ere a na lyzed w it h t he P R OTP A R S progra m (prot einequence pa rsimony meth od) from P HYL IP version 3.5 (ht tp://evo-ution.genet ics.wa shing ton.edu/phylip.ht ml). The numbers a t nodes

re boot s t ra p va lues for 100 replica t es of t he pa rs imony a na lys is .enBank accession numbers: rat Scn1a, X03638; rat Scn2a, X03639;

a t Scn3a, Y00766; r at Scn4a, M26643; ra t Scn5a, M27902; ra tcn7a, Y09164; mouse Scn8a, AF049617; ra t Scn9a  U79568; rat

cn10a, U 53833; ra t Scn11a, AF059030; Drosophila  P ar a, M32078;

Drosophila  DSC1, X14394-8. The analysis was carried out with theodent s equences beca us e s equence is not a va ila ble for t he huma n

enes SCN1A, SCN3A, a nd SCN11A. The chromosoma l locationshown in the figure are for the human orthologs (Table 1), becauseeveral of the rat genes have not been mapped to chromosomes.

26 P L U M M E R A N D M E I S L E R

7/28/2019 1999 Evolution and Diversity of Mammalian Sodium Channel Genes.pdf

http://slidepdf.com/reader/full/1999-evolution-and-diversity-of-mammalian-sodium-channel-genespdf 5/9

r a n s g e n ic m i ce r e s u l t s i n f oca l m ot o r a b n or m a l i t i es a n de iz u r e s ( K ea r n e y , J . A. , P l u m m er , N . W. , S m i t h , M . R . ,

K a pur , J . , G oldi n, A. L. , a nd M ei s l er , M . H . , m a nus c r i pt i nr ep a r a t i on ). H u m a n d i s ea s e m u t a t i on s w e r e fi r s t d i s co v-r ed i n S C N 4 A (P t a c ek et al ., 1991; Rojas et al ., 1991). Aa r ge s er i es of a l l el i c S C N 4 A m u t a t i on s h a v e b ee n i d e n t i -ed i n pa t i ent s wi t h m us c l e di s ea s e a nd func t i ona l l y c ha r -c t er i zed (Bul m a n, 1 9 9 7 ; Ca nnon, 1 9 9 7 ). Inher i t ed m ut a -ons i n S C N 5 A w e r e f o u n d i n p a t i e n t s w i t h t h e L o n g -Q T

y n d r o m e t y p e 3 , a d o m i n a n t l y i n h e r i t e d d i s e a s e c h a r a c -er i zed b y pr ol onged c a r di a c a c t i on pot ent i a l s (Bennet t et 

l . , 1995; Wang e t a l . , 1 9 9 5 ). S pont a neous a l l el i c m ut a -

i o n s o f t h e m o u s e S C N 8 A c h a n n e l r e s u l t i n a v a r i e t y o feur ol ogi c a l a b nor m a l i t i es i nc l udi ng c hr oni c a t a xi a , dy s -

o n ia , a n d l et h a l p a r a l y s i s ( Me is l er et al ., 1997).M os t of t he m ut a t i ons i n SC N 4 A a nd SC N 5 A result in

l owed cha nnel i na c t iv a t i on a nd exhi bi t dom i na nt i nher i -ance (Table 3). These can be considered “gain of function”

muta tions since the mut an t protein ha s functiona l propertieshat differ from those of the wildtype. At the cellular level ,he dom i na nt phenot y pe i n t hes e het er ozy got es ca n b e ex-l a i ned b y t he per s i s t ent c ur r ent gener a t ed b y t he m ut a nthannels even in the presence of normal channel proteins. Inont r a s t , t he m i s sens e m ut a t i on i n S CN 8 A i s r eces si velynherited, and heterozygotes are unaffected. Since this mu-

a t i on i ncr ea s es t he degr ee of depol a r i za t i on r eq uir ed forhannel opening, in heterozygous cells the wildtype channels

will continue to open in response to a ppropriate depolariza -on a nd ma inta in n ormal responsiveness. The recessive in-er i t a nc e of nul l m ut a t i ons i n S CN 8 A dem ons t r a t es t ha t0%of normal activity of this channel is sufficient for normalhysiological function.

The fir s t m ut a t i on i n a s odi um c ha nnel ␤ subunit gene,SC N 1 B, was recently identified in a human family with gen-

ralized epilepsy with febrile seizures plus (GEFSϩ), a formf childhood epilepsy (Wa llace et al ., 1998). I n functionalssa ys, the cysteine to glycine muta tion appears to inactivat ehe ␤ subunit , resulting in slowed ina ctivat ion of ␣ subunits.

Volta ge-gat ed sodium chan nels a re a lso of m edical signif-can ce as ta rgets for na tura l neurotoxins an d synthetic pha r-

macological compounds including anti-convulsant drugs, an-st het i cs , a nd neur opr ot ect i v e dr ugs t ha t a m el ior a t e t he

effec t s of s t r oke (Ta y l or a nd N a r a s i m ha n, 1 9 9 7 ; R a gs da l ea nd Avoli, 1998).

OverlappingPhenotypes of Mutations in Different

Neuronal Ion Channels

The recent identification of disease mutations has revealedoverlapping phenotypes resulting from mutations in differ-ent voltage-gat ed chann els. E pilepsy a nd seizures ha ve beenassociated with mutations in six genes: a sodium channel ␣

subunit , a sodium channel ␤ subunit , a potassium channel ␣subunit , and the calcium chann el ␣, ␤, a n d ␥ subunits (Table

4 ). Inher i t ed a t a xi a ha s b een a s s oc i a t ed wi t h m ut a t i ons i nfour genes: a sodium channel ␣ s ub uni t a nd t hr ee c a l ci umchannel subunits. Mice with mutations in the ␣ subunits ofc a l c i um a nd s odi um c ha nnel s exhi b i t a s i m i l a r a t a xi c ga i t(Fletcher et al ., 1996; Kohrman et al ., 1996). The clinicalsimilari t ies of muta tions in th ese cha nnels is not surprising,in view of their coordinated roles in the generation of actionpotentia ls. The phenotypic overlap presents a clinical chal-l en g e f o r m u t a t i on i de nt i fi c a t ion i n f a m il ie s t h a t a r e t oos m a l l for l inka ge a na l y s is . In pedi gr ees l inked t o chr omo-some 2q24, for example, i t may be necessary to screen formutations in al l of the neuronal genes in this cluster.

Evolution of Tetrodotoxin ResistanceMost voltage-gat ed sodium chan nels a re blocked by tetro-

dotoxin, a neurotoxin present in pufferfish of the fa mily Te-tra odontida e. Among th e 11 cha nnels in Table 1, the cardiacchannel SC N 5 A a n d t h e n e u r o n a l c h a n n e l s SCN10A a ndS C N 1 1 A a r e u n iq u e i n t h e ir r e si st a n c e t o t e t r od ot ox in(Gellens et al., 1992; Akopia n et al., 1996; Sangameswaran et 

al ., 1996; Ta te et al., 1998). These resistant genes contain apolar amino acid, cysteine or serine, at a position in the poresegment of doma in I t ha t is occupied by a n a romatic residuein the tetrodotoxin-sensitive genes. This aromatic residue ist hought t o i nt er a c t wi t h t he hy dr ophob ic s ur fa c e of t he t e-t r o d ot o xi n m o le cu l e (F o zz a r d a n d L i p ki n d , 1 996 ). S i t e -

directed muta genesis has confi rmed th e role of th is residue int he t et r odot oxi n r esi s t a nc e of SC N 5 A (Heinemann et al .,

1992b). Tetrodotoxin resistance can be generated experimen-tally by site-directed mutation of other residues that interact

TABLE 3

Overlapping Neurological Abnormalities Associated with Mutations in Voltage-Gated I on Channels

ha n nel G en e

P henot ype

At a xia D yst onia a  P a ra ly sis Migra ine S eizures

Na ϩ SCN 8A m ed   jo  m ed J  med,med tg  —

SCN2Ab 

noninactivat ing transgene a 

SCN1B  G E F SϩC a 2ϩ CACN A1A t ot t er in g   F H M tottering 

E A2

SCA6CACN B 4 l et h ar gi c l et h ar gi c  

CACN G2 st ar gazer st ar gazer  

CACN ␣2 ␦2 K ϩ K CN A1 t ar get ed n u l l , E AM

Note. G E F Sϩ, generalized epilepsy with febrile seizures plus; EA2, episodic ataxia type 2; SCA6, spinocerebellar ataxia type 6; FHM,amilial hemiplegic migraine. Uppercase, human gene symbol; lowercase italics, mouse mutant.

a  Sprunger et al. (1998).b  Kearney, J . A., Plummer, N. W., Smith, M. R., Kapur, J . , Goldin, A. L. , and Meisler, M. H., manuscript in preparation.

327E V OL U TI O N O F TH E S O D I U M C H AN N E L G E N E F AM I L Y

7/28/2019 1999 Evolution and Diversity of Mammalian Sodium Channel Genes.pdf

http://slidepdf.com/reader/full/1999-evolution-and-diversity-of-mammalian-sodium-channel-genespdf 6/9

wi t h t he t oxi n (K ont i s a nd G ol di n, 1 9 9 3 ; F ozza r d a nd Li p-ind, 1996), but mutations at these si tes have not been ob-

erved in nature.

Origin of Muscle-Specific Sodium Channels

In contrast to the sodium-dependent action potentials iner t eb r a t e m us cl e, a c t i on pot ent i a l s i n m us cl e of i nver t e-rates such as crustaceans and insects are calcium-depen-ent (Fatt and Ginsborg, 1958; Suzuki and Kano, 1977). In

most invertebrates, the expression of sodium channels ap-ears to be l imited to neurons (Tseng-Crank et al ., 1991;

Oka m ur a et al ., 1994; Dyer et al ., 1997). Sodium currentsa ve been detected in muscle of a mphioxus, an invertebra tehor da t e wi t h t he pr edupli ca t i on chor da t e genom e (Ha gi -

wa r a a nd K i dokor o, 1971; Holl a nd et al ., 1994). The datauggest that expression in muscle was a characteristic of ann cestra l chordat e sodium channel. Tha t gene ma y ha ve hadua l expression in n eurons a nd muscle. Alternat ively, mus-l e s peci fic it y m a y ha v e a r i s en i ndependent l y i n t he m a m -

malian genes on chromosome 3 and chromosome 17. Furtherna l y si s of t he s eq uence a nd expr es s ion of t he a m phi oxusenes might shed l ight on t he evolution of muscle-specifi codium channels.

Future Prospects

The evolutiona ry r ela tionships am ong the ma mma lia n so-ium channel ␣ genes in chromosomal location, exon organi-ation, and tetrodotoxin sensitivity described here provide ar a m ewor k for under s t a ndi ng t he or i gi n a nd di v er genc e ofhi s gene fa m i l y . Com pa r i s on of t he pr om ot er r egions of

members of this gene family that differ in t issue specificityould contribute to understanding the molecular evolution ofegulatory elements. Specific functional roles of the cytoplas-

m i c l oop dom a i ns i s a not her i m por t a nt a r ea for fut ur e r e-earch.

The un ique physiological role of individual sodium chan nelenes remains one of the most interesting issues in channeliology. The mammalian genome contains five neuron-spe-ific sodium channels with highly conserved amino acid se-uences and overlapping expression patterns in the central

nd peripheral nervous system (Felts et al ., 1997). Differ-nces in electrophysiologica l properties (Ram a n et al., 1997;m i t h et al., 1998), subcellular localization (Westenbroek et l . , 1989; Toledo-Aral et al., 1997), and level of expression in

specific classes of neurons (Garcia et al., 1998) cont ribute tot hei r uni q ue func t i ons . D ur i ng t he pa s t dec a de, ext ens i v e

site-directed mutagenesis produced a solid understanding ofthe sh ar ed functiona l domains involved in channel functionstha t could be a ssayed in t he oocyte system. During t he com-ing decade, analysis of neurophysiological effects of humanand mouse mutations, observed i n v i v o, wi l l s hed l i ght onuni q ue dom a i ns a nd t he evol ut ion of funct i ona l di ver si t ywithin the sodium channel gene family.

ACKNOWLEDGMENTS

P r e pa r a t i on of t h i s r e v i ew w a s s u pp or t e d b y N I H G r a n t sNS034509 an d G M24872. We th ank P riscilla Tucker for assista ncew it h int erpret a t ion of t he phylogeny. We a re gra t eful t o our col-

leagues in the Meisler laboratory and at the University of Michiganfor ma ny st imulat ing discussions. An a nonmyous reviewer providedvaluable suggestions for improving the manuscript.

REFERENCES

Akopian, A. N., S ivilotti, L., a nd Wood, J . N. (1996). A tet rodotoxin-

resistan t volta ge-gat ed sodium channel expressed by sensory n eu-rons. N a t u r e  379: 257–262.

Akopian, A. N., Souslova, V., Sivilotti, L. , an d Wood, J . N. (1997).

Structure and distribution of a broadly expressed atypical sodiumchannel. F EBS Let t . 400: 183–187.

Anderson, P. A., Holman, M. A., and Greenberg, R. M. (1993). De-

duced amino a cid sequence of a putat ive sodium chan nel from thescyphozoan jellyfi sh Cyanea capil lata. Proc. Natl. Acad. Sci. USA

90: 7419–7423.

B a iley, W. J . , Kim, J . , Wa gner, G . P . , a nd R uddle, F. H. (1997).P hylogenetic reconstruction of vertebra te H ox cluster duplications.

M ol. Bi ol . Evol. 14: 843–853.

Belcher, S. M., Zerillo, C. A., Levenson, R., Ritchie, J . M., and Howe,J . R . (1995). Cloning of a s odium cha nnel a lpha s ubunit fromrabbit Schwann cells. Proc. Natl. Acad. Sci. USA 92: 11034–11038.

Benn ett , P . B. , Yaza wa , K., Makita , N., and G eorge, A. L. , J r . (1995).Molecular mechanism for an inherited cardiac arrhythmia. N a t u r e  

376: 683–685.

B ulma n, D. E. (1997). P henot ype va ria t ion a nd new comers in ionchannel disorders. Hum. Mol. Genet. 6: 1679–1685.

B urges s , D. L . , Kohrma n, D. C. , Ga lt , J . , P lummer, N. W. , J ones ,J . M . , Spea r , B . , a nd M eis ler , M . H . (1995). M ut a t ion of a new  sodium channel gene, Scn8a, in the mouse muta nt “motor endplat edisease.” Nat. Genet. 10: 461–465.

TABLE 4

The Mode of Inheritance of Sodium Channel Mutations Depends on the Alteration in Channel Function

G ene Tissue Mut a t ion E ffect on funct ion I nher it a nce P h en ot y pe

CN2A B ra in G AL879-881Q3 D ela yed ina ct iva tion,persistent current

D om in a n t F oca l m ot or a b nor m a li ti es ,generalized seizures

C N4A Muscle M1592V D ela y ed ina ct iva t ion,

persistent current

D om in a nt H YP P , episod ic m us cle

weakness, elevatedserum potassium

C N5A H ea r t ⌬K P Q 1505-1507 D e la y e d i na c t iv a t ion ,persistent current

D om in an t F at a l ca rd ia c a rr hy th mia

C N8A B r a in A1071T D epola rizin g sh ift in volt a gedependence of a ctivation

R ecessive At axia

C N8A B r a in Null C om plet e loss of a ct ivit y Recessive L et h a l pa r a lysis

Note. Representa tive examples of the known m uta tions in S CN2A (Kear ney, J . A., Plum mer, N. W., Smit h, M. R., Ka pur, J ., G oldin, A. L. ,n d Meisler, M. H., m an uscript in prepara tion), S CN4A (Ca nnon, 1997), SC N5A (B ennett et al., 1995), a nd SC N8A (Kohrma n et al., 1996;

Meisler et al., 1997).

28 P L U M M E R A N D M E I S L E R

7/28/2019 1999 Evolution and Diversity of Mammalian Sodium Channel Genes.pdf

http://slidepdf.com/reader/full/1999-evolution-and-diversity-of-mammalian-sodium-channel-genespdf 7/9

u rglin, T. R., an d Ruvkun, G . (1993). The Caenorhabdi t is elegans 

homeobox gene cluster. Cur r. Opin. Genet. D ev. 3: 615–620.

a nnon, S. C. (1997). From mut at ion to myotonia in sodium chann el

disorders. Neuromusc. Di sord ers  7: 241–249.

a n n o n , S . C . , H a y w a r d , L . J . , B e e ch , J . , a n d B r o w n , R . H . , J r .

(1 99 5). S o d iu m c h a n n e l i n a c t iv a t i o n i s i m p a i r ed i n e q u i n e

h y p e r k a l e m i c p e r i o d i c p a r a l y s i s . J . N eu r o p h y si o l . 73: 1892–

1899.

ib-Ha jj, S . D ., Tyrrell, L. , B lack, J . A., and Waxma n, S . G . (1998).NaN , a novel voltage-gat ed Na channel, is expressed preferentially

in peripheral sensory neurons and down-regulated after axotomy.

Proc. Natl. Acad. Sci. USA 95: 8963– 8968.

iet r ich, P . S. , M cG ivern, J . G. , Delga do, S. G. , Koch, B . D. , Eglen,

R . M . , H u n t e r , J . C . , a n d S a n g a m e sw a r a n , L . (1 99 8). F u n c-

t iona l a na lys is of a volt a ge-ga t ed s odium cha nnel a nd i t s s plice

v a r i a n t f r o m r a t d o r s a l r o o t g a n g l i a . J. Neurochem. 70: 2262–

2272.

yer , J . R . , J ohnst on, W. L . , Ca s t ellucci, V. F. , a nd Dunn, R . J .

(1997). Cloning and tissue distribution of the Aplysia Na ϩ cha nnel

alpha -subunit cDNA. DNA Cel l B iol . 16: 347–356.

s c a y g , A. , J o n es , J . M . , K e a r n e y , J . A. , H i t c h co ck , P . F . , a n d

M eis ler , M . H. (1998). C a lcium cha nn el ␤4 ( C AC N B 4 ): H u m a n

o r t h o l o g o f t h e m o u s e e p i l e p s y g e n e l e t h a r g i c . Genomics  50:14–22.

att , P. , and Ginsborg, B. L. (1958). The ionic requirements for the

p r od u ct i on of a c t i on p ot e n t i a l s i n c r us t a c ea n m u s cl e fi b e rs .

J. Physiol. 142: 516–543.

elipe, A., Knit tle, T. J ., D oyle, K. L. , a nd Tam kun, M. M. (1994).

P rima ry str ucture and d ifferentia l expression during development

a nd pregna ncy of a novel volt a ge-ga t ed s odium cha nnel in t he

mouse. J. Biol . Chem. 269: 30125–30131.

elts, P. A., Yokoyama, S. , Dib-Hajj, S. , Black, J . A., and Waxman,

S. G. (1997). Sodium channel ␣-subunit mRNAs I, II , III , NaG and

hNE (PN1): Different expression patterns in developing rat ner-

vous system. Br ain Res.Mol. Br ain Res. 45: 71–82.

letcher, C. F. , Lutz, C. M., O’Sullivan, T. N., Shaughnessy, J . D.,J r . , H a w kes, R . , Fra nkel, W. N. , Copela nd, N. G. , a nd J enkins ,

N. A. (1996). Absence epilepsy in tottering mutant mice is associ-

ated with calcium channel defects. Cell  87: 607–617.

ozzard, H. A., a nd Lipkind, G . (1996). The gua nidinium toxin bind-

ing site on the sodium channel. J p n . H ea r t J . 37: 683–692.

rohnw ies er , B . , Chen, L . Q. , Schreibma yer, W. , a nd Ka llen, R . G .

(1997). Modulation of the human cardiac sodium channel a-sub-

unit by cAMP-dependent protein kinase and the responsible se-

quence domain. J. Physiol. 498: 309–318.

a r c i a , K . D . , S p r u n g e r , L . K . , M e i s l e r , M . H . , a n d B e a m , K . G .

(1998). P ostnat al developmental increase in t he density of sodium

currents in murine motoneurons. J. N eur osci. 18: 5234–5239.

aut ron, S. , Dos Sant os, G ., Pinto-Henriq ue, D., Koulakoff, A., Gros,F., a nd B erwa ld-Netter, Y. (1992). The glia l voltage-gat ed sodium

channel: Cell- and tissue-specific mRNA expression. Proc. Nat l .

Acad. Sci. U SA 89: 7272–7276.

ellens, M. E ., George, A. L. , J r . , Chen, L. Q., Cha hine, M., Horn, R.,

B a r ch i , R . L . , a n d K a l l en , R . G . (19 92). P r i m a r y s t r u ct u r e a n d

functional expression of the human cardiac tetrodotoxin-insensi-

tive voltage-dependent sodium channel. Proc. Natl. Acad. Sci. USA

89: 554–558.

eorge, A. L. , J r . , Iyer, G . S. , Kleinfi eld, R., Kallen, R. G., an d B ar chi,

R. L. (1993). Genomic organization of the human skeletal muscle

sodium channel gene. Genomics  15: 598–606.

eorge, A. L., J r., Knittle, T. J ., and Tamkun, M. M. (1992). Molec-

ular cloning of an at ypical volta ge-gat ed sodium channel expressed

in huma n hea rt a nd ut erus : Evidence for a dis t inct gene fa mily.

Proc. Natl. Acad. Sci. USA 89: 4893– 4897.

eorge, A. L., J r., Kn ops, J . F., H an , J ., Finley, W. H., K nitt le, T. J .,

Tam kun, M. M., and B rown, G . B . (1994). Assignment of a huma n

volta ge-dependent sodium chan nel ␣-subunit gene (SCN 6A) to

2q21–q23. Genomics 19: 395–397.

Goldin, A . (1999). Diversit y of ma mma lia n volt a ge-ga t ed s odium

channels. I n  “Molecular and Functional Diversity of Ion Channels

an d Receptors” (B. Rud y a nd P . Seeburg, Eds.), in press, New York

Academy of Sciences.

G ustafson, T. A., Clevinger, E. C ., O’Neill, T. J ., Yarowsky, P . J ., and

Krueger, B. K. (1993). Mutually exclusive exon splicing of type III

brain sodium channel alpha subunit RNA generates developmenta lly

regulated isoforms in rat brain. J. Biol. Chem. 268: 18648–18653.

Hagiwara, S., and Kidokoro, Y. (1971). Na and Ca components of action

potential in am phioxus muscle cells. J. Physiol. 219: 217–232.

Heineman n, S. H., Terlau, H ., St uhmer, W., Imoto, K., and Numa , S.

(1992a). Ca lcium channel cha racteristics conferred on the sodium

cha nnel by s ingle mut a t ions . N a t u r e  356: 441–443.

Heinemann, S. H., Terlau, H., and Imoto, K. (1992b). Molecular basis

for pharma cological differences between bra in a nd card iac sodium

channels. Pflu ger s A r ch . 422: 90–92.

Hille, B . (1992). “ I on C ha nnels of Excit a ble M embra nes , ” S ina uer

Associat es, Sun derland, MA.

Holla nd, P . W. H., G a rcia-Ferna n dez, J ., William s, N. A., and Sid ow,

A. (1994). Gene duplications and the origins of vertebrate devel-

opment. Development Suppl., 125–133.

Isom, L. L. , D e J ongh, K. S. , a nd Ca ttera ll, W. A. (1994). Auxiliary

subunits of voltage-gated ion channels. Neuron  12: 1183–1194.

I s om, L . L . , De J ongh, K. S. , P a t t on, D. E . , R eber, B . F. , Offord, J .,

Cha rbonnea u, H . , Wa ls h, K. , Goldin, A. L . , a nd Ca t t era ll , W. A .

(1992). Primary structure and functional expression of the beta 1

s ubunit of t he ra t bra in s odium cha nnel. Science 256: 839–842.

I s om, L . L . , R a gs da le, D. S . , De J ongh, K. S . , Wes t enbroek, R . E. ,

R eber, B . F. X. , S cheuer, T. , a n d C a t t era ll , W. A . (1995). S t ruc-

t ure a nd funct ion of t he ␤2 s ubunit of bra in s odium cha nnels , a

t r a n s m e m b r a n e g l y c o p r o t e i n w i t h a C A M m o t i f . Cell  83: 433–

442.

J ones, J . M., Meisler, M. H., a nd Isom, L . L. (1996). Scn2b, a voltage-

gated sodium channel ␤2 gene on mouse chr omosome 9. Genomics 34: 258–259.

Kenyon, C . , a nd Wa n g, B . (1991). A clus t er of Ant ennapedia -class

h o m eo b ox g e n e s i n a n o n s eg m e n t e d a n i m a l . Science 253: 516–

517.

Kohrma n, D. C ., Smith, M. R., G oldin, A. L. , Ha rris, J . , and Meisler,

M. H. (1996). A missense mutation in the sodium channel Scn8a is

res ponsible for cerebella r a t a xia in t he mous e mut a nt jo l t ing.

J . N eur osci. 16: 5993–5999.

Kontis, K . J . , and G oldin, A. L. (1993). S ite-directed mut agenesis of

t h e p ut a t i v e p o re r e gi on of t h e r a t I I A s od i um ch a n n e l. M o l .

Pharmacol. 43: 635–644.

Loughney, K., Kreber, R., and Ganetzky, B. (1989). Molecular anal-

ys is of t he para  locus, a sodium channel gene in Dr osophila. Cell  58: 1143–1154.

Lundin, L. G . (1993). E volution of the vertebrat e genome as reflected

in paralogous chromosomal regions in man and the house mouse.

Genomics 16: 1–19.

Maka lowski, W., Zhang, J . , an d B oguski, M. S . (1996). Compar at ive

an alysis of 1196 orthologous mouse and huma n full-length m RNA

and protein sequences. Genome Res. 6: 846–857.

M a kit a , N. , Sloa n-B row n, K. , Weghuis , D. O. , R opers , H. H. , a nd

G eorge, A. L. , J r . (1994). G enomic orga nizat ion an d chromosomal

assignm ent of the huma n volta ge-gat ed Na(ϩ)cha nnel ␤-1 subu nit

gene (SCN1B ). Genomics  23: 628–634.

Marban, E. , Yamagishi, T., and Tomaselli, G. F. (1998). Structure

and function of voltage-gated sodium channels. J. Physiol . 508:647–657.

McClat chey, A. I., Cannon, S. C., Slaugenha upt, S. A., and G usella, J . F.

(1993). The cloning and expression of a sodium channel ␤1-subunit

cDNA from human brain. Hum. Mol. Genet. 2: 745–749.

329E V OL U TI O N O F TH E S O D I U M C H AN N E L G E N E F AM I L Y

7/28/2019 1999 Evolution and Diversity of Mammalian Sodium Channel Genes.pdf

http://slidepdf.com/reader/full/1999-evolution-and-diversity-of-mammalian-sodium-channel-genespdf 8/9

McClatchey, A. I . , Lin, C. S . , Wan g, J ., Hoffman, E . P. , Rojas, C. , an d

Gusella, J . F. (1992). The genomic structure of the human skeletal

muscle sodium cha nnel gene. Hum. Mol. Genet. 1: 521–527.

McCormick, K. A., Isom, L. L. , Ra gsda le, D., Sm ith, D ., Scheuer, T.,

an d C at tera ll, W. A. (1998). Molecular d eterminan ts of Na ϩ cha n-

n e l f u n c t i o n i n t h e e x t r a c e l l u l a r d o m a i n o f t h e b e t a 1 s u b u n i t .

J. B iol . Chem. 273: 3954–3962.

M eis ler , M . H. , S prunger, L . K. , P lummer, N. W. , Es ca yg, A ., a nd

J ones, J . M. (1997). Ion channel muta tions in mouse models of

inherited neurological d isease. Ann. M ed. 29: 569–574.

Messner, D . J ., a nd C a tt era ll, W. A. (1985). The sodium cha nnel fr om

ra t bra in: Sepa ra t ion a nd cha ra ct eriza t ion of s ubunit s . J . B i ol .

Chem. 260: 10597–10604.

M urphy, B . J . , R ogers , J . , P erdichizzi , A . P . , Colvin, A . A. , a nd

Catterall, W. A. (1996). cAMP-dependent phosphorylation of two

s it es in t he a lpha s ubunit of t he ca rdia c s odium cha nnel. J . B i o l .

Chem. 271: 28837–28843.

Noda, M., Shimizu, S. , Tanabe, T., Taka i, T., Ka ya no, T., Ikeda , T.,

Ta ka ha s hi, H. , Na ka ya ma , H. , Ka noa ka , Y. , M ina mino, N. , Ka n-

g a w a , K . , M a t s u o , H . , R a f t e r y , M . A . , H i r o s e , T . , I n a y a m a , S . ,

Ha ya s hida , H. , M iya t a , T. , a nd Numa , S. (1984). P rima ry s t ruc-

t u r e o f El ectr ophoru s electr icus  s odium cha nnel deduced from

cDNA sequence. N a t u r e  312: 121–127.h, Y. , a nd Wa xma n, S. G. (1998). Novel s plice va ria t ion of t he

sodium channel alpha subunit . NeuroReport  9: 1267–1272.

ka mura , Y. , Ono, F. , Oka ga ki, R . , Chong, J . A ., a nd M a ndel, G.

(1994). Neural expression of a sodium channel gene requires cell-

specifi c intera ctions. Neuron  13: 937–948.

at ton, D. E . , Isom, L. L. , Ca ttera ll, W. A., a nd G oldin, A. L. (1994).

The a dult bra in ␤1 s ubunit modifies a ct iva t ion a nd ina ct iva t ion

gat ing of multiple sodium chan nel ␣ subunits. J. Biol. Chem. 269:17649–17655.

lummer, N. W. , G a lt , J . , J ones , J . M . , B urgess , D . L . , S prunger,

L. K., Kohrman, D. C., and Meisler, M. H. (1998). Exon organiza-

tion, coding sequence, physical mapping, and polymorphic intra-

g e ni c m a r k e r s f o r t h e h u m a n n e u ro na l s od i u m c h a n n e l g e n e

SCN8A. Genomics. 54: 287–296.

lummer, N. W. , M cB urney, M . W. , a nd M eis ler , M . H. (1997).

Alterna tive splicing of the sodium chan nel SC N8A predicts a trun -

ca t ed t w o-doma in prot ein in fet a l bra in a nd non-neurona l cells.

J. B iol . Chem. 272: 24008–24015.

otts, J . F. , Regan, M. R., Rochelle, J . M., Seldin, M. F. , a nd Agnew,

W. S. (1993). A glial-specifi c volta ge-sensitive Na channel gene

ma ps close t o clus t ered genes for neurona l is oforms on m ous e

chromosome 2. Biochem. Biophys. Res. Commun. 30: 100–4.

tacek, L. J ., George, A. L., J r., Griggs, R. C., Tawil, R., Kallen, R. G.,

Barchi, R. L. , Robertson, M., and Leppert, M. F. (1991). Identifi-

ca t ion of a mut a t ion in t he gene ca us ing hyperka lemic periodic

pa ra lys is . Cell  67: 1021–1027.

u, Y., Isom, L. L., Westenbroek, R. E., Rogers, J . C., Tanada, T. N.,McCormick, K. A., Scheuer, T., and Catterall, W. A. (1995). Mod-

ula t ion of ca rdia c Na ϩ channel expression in Xenopus oocytes by

␤1 subunits. J. Biol . Chem. 270: 25696–25701.

agsd ale, D . S. , an d Avoli, M. (1998). S odium chann els as molecular

t a rget s for a nt iepilept ic drugs . Brai n Res. B rain Res. Rev. 26:16–28.

am an, I . M., Sprunger, L. K., Meisler, M. H., a nd B ean, B . P. (1997).

A lt ered s ubt hres hold s odium current s a nd dis rupt ed firing pa t -

t erns in P urkinje neurons of Scn8a  m u t a n t m i ce . Neuron  19:881–891.

oja s , C. V. , Wa ng, J . Z . , Schw a t rz , L . S. , H offma n, E. P . , P ow ell ,

B. R., an d B rown, R. H., J r . (1991). A Met-to-Val mut at ion in t he

skeletal muscle Na ϩ alpha-subunit in hyperkalemic periodic pa-

ralysis. N a t u r e  354: 387–389.

uddle, F. H. , B a rt els , J . L . , B ent ley, K. L . , Ka ppen, C. , M urt ha ,

M. T., an d P end leton , J . W. (1994). Ev oluti on of H OX  genes. A n n u .

Rev. Genet. 28: 423–442.

Rudolph, J . A., Spier, S. J . , By rns, G ., Rojas, C. V., B ernoco, D., a nd

Hoffman, E. P. (1992). Periodic paralysis in quarterhorses: A so-dium cha nnel mut a t ion dis s emina t ed by s elect ive breeding. N a t .

Genet. 2: 144–147.

Sa nga mes w a ra n, L . , Delga do, S. G. , Fis h, L . M . , Koch, B . D. , J a ke-man, L. B. , Stewart, G. R., Sze, P. , Hunter, J . C. , Eglen, R. M., andHerman, R. C. (1996). Structure and function of a novel voltage-gated, tetrodotoxin resistant sodium channel specific for sensoryneurons. J. B iol . Chem. 271: 5953–5956.

Sarao, R., Gupta, S. K., Auld, V. J . , and Dunn, R. J . (1991). Devel-opmenta lly regulated a lterna tive RNA splicing of ra t bra in sodiumchannel mRNAs. Nucleic Acids Res. 19: 5673–5679.

S a t o , C . , a n d M a t s u m ot o , G . (1 99 2). P r i m a r y s t r u ct u r e of s q u idsodium channel deduced from t he complementary DNA sequence.

Biochem. Biophys. Res. Commun. 186: 61–68.

Scha ller , K. L . , Krzemien, D. M . , M cKenna , N. M . , a nd Ca ldw ell ,J . H . (1992). Alternat ively spliced sodium channel tra nscripts inbra in a nd mus cle. J. N eur osci. 12: 1370–1381.

Smit h, R . D. , a nd Goldin, A . L . (1996). P hos phoryla t ion of bra insodium channels in the I-II linker modulates channel function in

Xenopus oocytes. J. N eur osci. 16: 1965–1974.

Smit h, M . R . , Smit h, R . D. , P lummer, N. W. , M eis ler , M . H. , a nd

Goldin, A. L. (1998). Functional analysis of the mouse Scn8a so-dium channel. J. Neurosci. 18: 6093–6102.

Souslova, V. A., Fox, M., Wood, J . N., an d Akopian, A. N. (1997).Cloning and characterization of a mouse sensory neuron tetrodo-t o x in -r e s is t a n t v ol t a g e -g a t e d s od i u m c h a n n e l g e n e Scn10a.

Genomics 41: 201–209.

Spa fford, J . D ., S pencer, A. N., a nd G allin, W. J . (1998). A puta tivevolt a ge-ga t ed s odium cha nnel a lpha s ubunit (P pSCN1) from t he

hydrozoa n jellyfi s h, Polyorchis penicil latus:   St ruct ura l compa ri-s ons a nd evolut iona r y cons idera t ions . Bi ochem. Bi ophys. Res.

Commun. 244: 722–780.

S p r u n g e r , L . K . , E s ca y g , A. , Ta l l a k s e n -G r e e n e, S . , Al b i n , R . L . ,a n d M eis ler , M . H. (1998) G enera lized dys t onia a s s ocia t ed w it hm u t a t i o n o f t h e n e u r o n a l s o d i u m c h a n n e l Scn8a:  R o l e o f t h e

modifi er locus Scnm1  on mouse chromosome 3. H um. M ol. G en- et., in pres s .

Suzuki, N., a nd Ka no, M. (1977). D evelopment of action potential inla rva l mus cle fi bers in Dr osophila melanogaster. J. Cell . Physiol.

93: 383–388.

Ta t e, S. , B enn, S. , Hick. C. , Trezis e, D . , J ohn, V . , M a nion, R . J . ,Cos t iga n, M . , P lumpt on, C. , G rose, D. , G la dw ell , Z ., Kenda ll , G . ,Da le, K., B ountra , C. , an d Woolf, C. J . (1998). Two sodium chan-

nels contribute to the TTX-R sodium current in primary sensoryneurons. N at. N eur osci. 1: 653–655.

Ta ylor , C. P . , a nd Na ra s imha n, L . S. (1997). S odium cha nnels a nd

therapy of central nervous system diseases. Adv. Pharmacol. 39:47–98.

Th o m ps on , J . D . , H i g g i n s , D . G . , a n d G i b s o n , T. J . (1 99 4).

CL U STAL W: I mproving t he s ens it ivit y of progres s ive mult iples e q u en c e a l i g n m en t t h r o u gh s eq u e n ce w e i g h t in g , p os i t io n s-s p ec ifi c g a p p e n a l t i es a n d w e i g h t m a t r i x c h oi ce . N u cl ei c A ci d s  

Res. 22: 4673–4680.

Toledo-Ara l, J . J ., Moss, B. L., H e, Z-J ., Koszowski, A. G ., Whisena nd,T., Levinson, S. R., Wolf, J . J ., Silos-Sa ntia go, I., Ha legoua, S., a ndMandel, G . (1997). Identification of PN1, a predominant voltage-dependent sodium channel expressed principally in peripheral neu-rons. Proc. N atl. A cad. Sci. U SA 94: 1527–1532.

Ts eng-Cra nk, J . , P olla ck, J . A. , Ha ya s hi, I . , a nd Ta nouye, M . A.(1991). Expression of ion channel genes in Drosophila. J. Neuro- 

genet. 7: 229–239.

W a l l a c e , R . H . , W a n g , D . W . , S i n g h , R . , S c h e f f e r , I . E . , G e o r g e ,

A . L . , P hil l ips , H. A . , Sa a r , K. , R eis , A . , J ohns on, E. W. , Sut h-erla nd, G. R . , B erkovic, S. F. , a nd M ulley, J . C. (1998). Febriles eizures a nd genera lized epileps y a s s ocia t ed w it h a mut a t ion int h e N a ϩ-channel ␤1 s ubunit gene SCN1B . N at . G enet . 19: 366–370.

30 P L U M M E R A N D M E I S L E R

7/28/2019 1999 Evolution and Diversity of Mammalian Sodium Channel Genes.pdf

http://slidepdf.com/reader/full/1999-evolution-and-diversity-of-mammalian-sodium-channel-genespdf 9/9

Wa n g , D . W ., Y a z a w a , K . , G e or g e, A . L . , J r . , a n d B e n n et t , P . B .

(1996a). Characterization of the human cardiac Na ϩ cha nnel mu-ta tions in the congenital Long QTsyndr ome. Proc. Natl. Acad. Sci.

U SA 93: 13200–13205.

Wang, Q., Shen, J ., Splawski, I., Atkinson, D., Li, Z., Robinson, J . L.,Moss, A. J . , Towbin, J . A., an d Keat ing, M. T. (1995). SC N5Amut a t ions a s s ocia t ed w it h a n inherit ed ca rdia c a rr hyt hmia , L ongQT syndrome. Cell  80: 805–811.

Wa ng, Q. , L i , Z ., Shen, J . , a nd Kea t ing, M . T. (1996b). Genomicorga niza t ion of t he huma n SCN5A gene encoding the cardiac so-dium channel. Genomics 34: 9–16.

Westenbroek, W. E., Merrick, D. K., and Catterall, W. A. (1989).

Differential subcellular localization of the R I a n d R II Na ϩ channelsubtypes in central neurons. Neuron  3: 695–704.

Wollner , D. A. , M es s ner, D. J . , a nd Ca t t era ll , W. A . (1987). ␤2

s u b un i t s of s od i u m ch a n n e l s f r o m v er t e br a t e b r a i n : S t u d i esw i t h s u b u n i t -s p ec ifi c a n t i b od i e s. J . B i o l . C h e m . 262: 14709–14715.

Ya ng, J . S. , B ennet t , P . B . , M a kit a , N. , George, A . L . , a nd B a rchi,R. L. (1993). E xpression of t he sodium channel ␤1 s ubunit in ra tskeletal muscle is selectively associated with the tetrodotoxin ␣

subunit isoform. Neuron  11: 915–922.

331E V OL U TI O N O F TH E S O D I U M C H AN N E L G E N E F AM I L Y

top related