14 solar energy - today at minesinside.mines.edu/~jjechura/energytech/14_solar_energy.pdf ·...

Post on 12-Jul-2020

7 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

John Jechura – jjechura@mines.eduUpdated: January 4, 2015

Solar EnergyCourtesy: Pam Spath, URS

Energy Markets Are Interconnected

2

https://publicaffairs.llnl.gov/news/energy/energy.html

How much is available?

• Earth receives 174 PW (petawatts, 1015 ) of incoming solar radiation (insolation) at the upper atmosphere

• 89 PW absorbed by land & oceans

Energy usage in 2002 about the same as solar energy at surface in 1  hour

• Solar energy can be harnessed in different levels around the world. Depending on a geographical location the closer to the equator the more "potential" solar energy is available

3

How does location affect available energy? 

CityInsolation[W/m2]

Seattle 125El Paso 240Rio de Janeiro 200Glasgow 100Tokyo 125Naples 200Cairo 280Johannesburg 230Mumbai 240Sydney 210

4

• Intensity reaching the surface of the earth strongly dependent upon the latitude (angle to incoming ray of sunlight)

5

How do we make use of solar energy?

• Photovoltaic

• Solar thermal

Water heating

Space heating & cooling

Process heat generation

• Concentrating solar furnaces

6

Solar cooling?

• Based on evaporation carrying heat

• Adsorption chillers driven by hot water rather than large amounts of electricity (like conventional air conditioners)

7

What is Driving Growth in Solar?

• Renewable Portfolio Standards

• Tax credits: 30% investment credit until 1/1/2017

8

Phototvoltaic

9

Photons converted directly to electricity using semiconducting material (without moving parts)

Phototvoltaic

10

Cell Types:

Polysilicon - single or multicrystalline (largest percentage)

Thin film – amorphous silicon, cadmium telluride, etc (industry moving towards)

Multi-junction – multiple layers (utilizes multiple parts of the spectrum)

Nanotubes (novel technology)

Cell efficiency = 5 - 40%

Commercial modules = 10-15%

Cell Efficiencies

11

PV Potential

12

‐Worldwide PV capacity:

- ‐ at end of 2008: 15 GW ‐ by 2012:  26 GW

‐ U.S. PV capacity:

- ‐ at end of 2008: 250 MW ‐ by 2012:  6 GW (3.9 GW in California)

‐Majority are fixed flat plate but can have tracking system (single or dual); also concentrating PV

‐ Residential rooftops (2 – 5 kW)‐ Commercial rooftops (5 – 10 kW)‐ Utility (5 – 54 MW): largest U.S. 22 MW in Florida, largest world 54 MW in Spain

‐ Current cost ≈ $4,000/kW (low price of silicon has decreased PV prices by 50% in last 2 years)

Innovative PV Technology

13

PV shingles

First full-scale production facility for Dow Powerhouse solar shingle being built in Midland, Michigan

Parabolic Trough

14

Parabolic shaped mirrors concentrate sun to central receiver

Focus light on linear receiver above mirrors

Organic heat transfer fluid (750 ºF – above this fluid breaks down)

Mirrors, receivers, heat exchangers, steam turbine and possibly energy storage

Energy Storage

15

Increases capacity factor

8 hours of storage = doubling of solar field

Dispatchable power

Premium power price when demand is high to help pay for additional capital

2 Tank Energy Storage System (current technology)

16

Molten salt (60% sodium nitrate / 40% potassium nitrate)

For parabolic trough:Cold storage = 300°C (572°F) Hot storage = 386°C (727°F)

(limited by heat transfer fluid)

Heat Transfer Fluid Temperature Range

Salt solidifies below 200°C

Higher temp for Power Tower (550°C)

Single Tank Thermocline

17

Transfer heat to/from inert material (rock/sand)

Hot fluid at top; cold fluid at bottom; in between is thermocline

Must maintain thermocline; will be a zone of unusable energy

Advantages:‐ ‐ 1 tank‐ ‐ storage medium potentially less expensive

Disadvantage:‐ ‐ operation more complex‐ ‐ unusable portion spreads over time‐ ‐ potential for thermal cycling issues;‐ settling of fill material

Other Energy Storage

18

Concrete

Advantages: Disadvantages:‐ low cost ‐ low energy density‐ good thermal stability ‐ low thermal conductivity‐ easy to pour/shape

Phase change materials (solid‐liquid)

Advantages: Disadvantages:‐ higher energy density ‐more complex operation‐ lower cost ‐ energy penalty from sensible

heat to latent heat and back

Current & Future for Parabolic Trough

19

Total capacity of current operating plants = 625 MW

Total capacity of being constructed plants = 2,270 MW (majority in Spain)

Total capacity of planned plants = 6,615 MW (86% or 5,665 MW in California or Arizona)

Many new plants include energy storage

Parabolic Trough ‐ Plant Size & Cost

20

‐Modular but optimal steam turbine size is 100 – 125 MW (economics of pumping heat transfer fluid vs steam turbine located centrally around solar field)

‐ Current largest plant = 100 MW

‐ Constructed plants = 50 MW or 100 MW

‐ Planned plants = many 250+ MW

‐ Current cost ≈ $6,500/kW (levelized cost ≈ $0.18/kWh; compared to $0.11 ‐ $0.07/kWh for residential to industrial)

Compact Linear Fresnel Reflector (CLFR)

21

Arrays of optically-shaped reflector mirrors

Focus light on linear receiver above mirrors

Direct steam production (saturated or superheated)

Augment existing plant or stand alone

Prototype in Australia

Dish/Engine

22

Power Conditioning Unit (PCU)

No water in power generation

Stable design up to 90 mph wind (“wind still” position)

3 large scale utility projects breaking ground in California & Texas in 2010

Most efficient solar technology

Power Tower

23

Tracking mirrors focus sunlight to central receiver (usually mounted on a tower)

Molten salt or direct steam generation

Higher temperatures than parabolic trough (1050ºF vs 750ºF)

3 plants operating in Spain (48 MW)

3 plants being built in Mojave Desert (400 MW)

Land Requirement

24

PV = 5 – 10 acres/MW

Compact Linear Fresnel = 3 acres/MW

Solar Trough = 4 acres/MW

Dish/Stirling = 6 acres/MW

Power Tower = 8 acres/MW

top related