1 ghiath monnet edf - r&d dep. materials and mechanics of components, moret-sur-loing, france...

Post on 19-Dec-2015

219 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

Ghiath MONNET

EDF - R&D

Dep. Materials and Mechanics of Components,

Moret-sur-Loing, France

Bridging atomic to mesoscopic scale: multiscale simulation of plastic deformation of iron

PERFECT (PERFORM): integrated European project for simulations of irradiation effects on materials

FP 7 P rojectFP 7 P roject

P E R FO R M 60P E R FO R M 60FP 7 P rojectFP 7 P roject

P E R FO R M 60P E R FO R M 60

2

Objective :

Case of void interaction with dislocations

Irradiation leads to material damages

• production of point defects

• acceleration of aging

• formation of clusters, diffuse precipitates

Consequences: modification of mechanical behavior

• strong strengthening

• deformation localization and embrittlement

Prediction of radiation effects on mechanical properties

3

Atomic and mesoscopic approaches

Interaction nature: atomic(atomic vibration, neighborhood)

• Smoothing atomic features into a continuum model

• No adjustable parameter !!

Strengthening scale: microstructure(temperature, disl. density, concentration)

4

In this talk ...

• Molecular Dynamics simulation of dislocation-void interactions

• Analysis of MD results on the mesoscopic scale

• Dislocation Dynamics prediction of void strengthening

5

S

h

]011[ny

]111[bx

]211[lz

motion attraction R Bowing-up unpinning

Atomic simulations

• Size dependent results

• Different interaction phases

• Analysis of pinning phase

• Reversible isothermal regime

-50

0

50

100

150

200

0.000 0.004 0.008 0.012

R

a b c ed f

MPa

p

E poteV

6

dise ddd

curvF

discurvdisFeapp dddVdW

Elastic workDissipated work Curvature work

RRapp dVdVW Ε::Σ

Mechanical analysis at 0K

7

Energetics decomposition at 0K E

nerg

ie (

eV)

-10

0

10

20

30

40

0.0 0.2 0.4 0.6 0.8

(a)

Ecurv

Upot

Eel

Eint

r

(%)

-20

0

20

40

60

80

100

120

0,000 0,004 0,008 0,012

Ecurv

Upot

Eel

Eint

r

(%)

(b)

20 nm Edge dislocation, 1 nm void 40 nm edge dislocation, 2 nm void

Analyses provide interaction energy and estimate of the line tension

8

Analyses of atomic simulations at 0 K

How to define an intrinsic strength of local obstacles ?

9

The maximum stress depends on

• void size

• dislocation length

• simulation box dimensions

Intrinsic strength of voids at 0K

10

Case of all local obstacles

)( feff w

l

• Can be obtained from MD

• No approximation

lw

eff

)( fmaxc w

l

is c a characteristic quantity ?

Intrinsic strength of voids at 0K

fappappeff w

l

[Monnet, Acta Mat, 2007]

11

w

lcfmax

• The intrinsic “strength” depends on obstacle nature, not size

• Strength of voids > strength of Cu precipitates

GPa25.4)( voidsc

GPa33.2prct)( Cuc0

50

100

150

200

0.00 0.01 0.02 0.03 0.04 0.05 0.06

(MPa)fmaxapp

l

w

Intrinsic strength of voids at 0K

12

Identification of thermal activation parameters

Analyses of atomic simulations at finite temperature

13

Temperature effect on interaction

(MPa)

(%)

• Decrease of the lattice friction stress

• Decrease of the interaction strength

• Decrease of the pinning time

Stochastic behavior (time, strength)

[Monnet et al., PhiMag, 2010]

MD simulation, Iron, 0K, 20 nm edge dislocation - 1 nm void

14

Survival probability

The rate function

(MPa)

(%)

T = 300 K

Interaction time t

Survival probability: Po(t)

dP(t) = Po(t) (t) dt

0

0 )(exp)( dttP

0

)(exp)()( dttp

Probability density: p()

kT

tGt

)(exp)(

dp = (t) dt

15

Analyses of thermal activation: activation energy

Case of constant stress = c

c

ccs d

1exp

0

sc kTG ln)(

Determination of the attack frequency

2ln)(

w

blkTG Dsc

w

Peierls Mechanism

w

bkTG Dsc ln)(

Local obstacles

16

For constant strain rate: eff varies during t

Can we find a constant stress (c) providing the same survival probability at s ?

s

dttsc

0

)(expexpkT

G cc

)(exp

s

s

tdtts

c

)()(1

0

Development of G = A - V*eff teffc V

V )exp(ln

1 **

c little sensitive to V*

Analyses of thermal activation: critical stress

17

The critical and the maximum stresses

• Always c < max

• When T tends to 0K, c tends to max

• At high T, c is 30% lower than max

Critical stress for voids

0

100

200

300

400

0 200 400 600

max

(GPa)

c

T (K)

18

0.0

0.1

0.2

0.3

0.4

0.5

0 200 400 600 800

G (eV)

T (K)

C = 8.1

• t varies slowly with T

• t varies with strain rate MD simulations (t 1 ns): C = 8

Experiment (t 1 s): C = 25

Activation energy = f (stress, temperature)

Experimental evidence G(c) = CKT

kTCw

btkTG D

c

2ln)(

0.0

0.1

0.2

0.3

0.4

0.5

2.5 3.0 3.5 4.0 4.5c(GPa)

G (eV)

Activation energy

19

Dislocation Dynamics simulations of void strengthening

Using of atomic simulation results in DD

• validation of DD simulations• determination of void strengthening

20

Validation of dislocation dynamics code

0

0,5

1

1,5

2

1 10 100 1000

Example of the Orowan mechanism

B

r

D

L

bA

pc

0

ln

[Bacon et al. PhilMag 1973]

)( pc Lb

bD

Screw

Edge

Simulation of the Orowan mechanism

21

Comparison of dislocation shape

Edge dislocation - void interaction

GPa25.4)( voidsc

22

Thermal activation simulations in DD

Edge dislocation - void interaction

150

200

250

0 200 400 600

DD

MD

Comparison between DD and MD results

eff

Activation path in DD

• Computation of eff

• Calculation of G(eff)

• Estimation of dp =(t)dt

• Selection of a random number x

• jump if x > dp

23

DD prediction of void strengthening

• Average dislocation velocity : 5 m/s

• Number of voids : 12500

0

50

100

150

200

250

0.0 0.5 1.0 1.5

Prediction of the critical stress

T° K Periodic row Random distribution

0 K 245 MPa 200 MPa

600 K 165 MPa 140 MPa

24

Conclusions

• Atomic simulations are necessary when elasticity is invalid

• Obstacle resistance must be expressed in stress and not in force

• Void resistance = 4.2 GPa to be compared to Cu prct of 4.3 GPa

• Despite the high rate: MD are in good agreement with experiment

• Activation path in DD simulations is coherent with MD results

• DD simulations are necessary to predict strengthening of realistic microstructures

25

Collaborators

• Christophe Domain, MMC, EDF-R&D, 77818 Moret sur loing, France

• Dmitry Terentyev, SCK-CEN, Boeretang 200, B-2400, Mol, Belgium

• Benoit Devincre, Laboratoire d’Etude des Microstructures, CNRS-ONERA, 92430 Chatillons, France

• Yuri Osetsky, Computer Sciences and Mathematics Division, ORNL

• David Bacon, Department of Engineering, The University of Liverpool

• Patrick Franciosi, LMPTM, University Paris 13, France

26

Any problem?

• Segment configuration (in DD) influence the critical stress

• Given MD conditions, thermal activation can not be large

• How to “explore” phase space where eff is small (construct the whole G (eff))

• Accounting for obstacle modification after shearing

• Develop transition methods for obstacles with large interaction range

• Give a direct estimation for the attack frequency

• What elastic modulus should be considered in DD

• How to model interaction with thermally activated raondomly distributed obstacles?

27

Screw dislocation in first principals simulations

Ab initio simulation

EAM potential, Mendelev et al. 2003EAM potential,Ackland et al. 1997

top related