010 w3310 12 - · pdf file•cellular’ireses –bip –c8myc...

Post on 08-Feb-2018

216 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Transla'onLecture  10

Virology  W3310/4310Spring  2012

The  difficulty  lies,  not  in  the  new  ideas,  but  in  escaping  old  ones...

-­‐-­‐JOHN  MAYNARD  KEYNES

1

retroviruses

PoliovirusSindbis  virus Influenza  virus

VSV

reovirus

hepaNNs  B  virus

2

• Found  on  most  eukaryo/c  mRNAs  except  organelle  mRNAs  and  certain  viral  mRNAs

• 5'-­‐7-­‐methylguanosine  (m7G)  joined  to  second  nucleo/de  of  mRNA  by  5'-­‐5'  phosphodiester  linkage

• Directs  pre-­‐mRNAs  to  processing  and  transport  pathways,  regulates  mRNA  turnover,  required  for  efficient  transla/on  by  5'-­‐end  dependent  mechanism

N N

N

O

HN

H2N

CH3

O

CH2 O P O PO

O-

O

O-

OHO P O CH2

O

O-

O

O O(CH3)

POO-

O CH2 O

O O(CH3)

P OOO-

5'5'

(m7)

3'

base 1

base 22'3'

5'

OH2'

3' 2'

guanosine

5’-­‐cap  structure

3

5’-­‐untranslated  region

•3  –  >1,000  nt  in  length,  typically  50  –  70  nt•OWen  contains  RNA  secondary  structures;  must  be  unwound  to  allow  passage  of  ribosome

•Length  and  secondary  structure  influence  translaNon  efficiency

3’-­‐untranslated  region

•Can  regulate  translaNon  iniNaNon,  translaNon  efficiency,  mRNA  stability

•poly(A)  tail,  necessary  for  efficient  translaNon

4

TranslaNonal  machinery:  Ribosomes

RNA=pink,  yellowProtein=blue

5

TranslaNonal  machinery:  tRNAs

6

Transla'onal  machinery

• Ribosomes• tRNAs• ini/a/on  proteins  (eIF)• elonga/on  proteins  (eEF)• termina/on  proteins  (eRF)

7

Two  mechanisms  of  ini'a'on

• 5’-­‐dependent  iniNaNon  (most  mRNAs):  iniNaNon  complex  binds  to  5’-­‐cap  structure,  and  scans  in  a  3’-­‐direcNon  to  the  iniNaNon  codon

• Internal  ribosome  entry:  iniNaNon  complex  binds  at,  or  just  upstream  of,  the  iniNaNon  codon

8

5’-­‐end  dependent  ini'a'on

9

10

11

12

Other  mechanisms  for  decoding  have  been  discovered  in  virus-­‐infected  cells

13

Ribosome  shun'ng

-­‐80  kcal/mole

14

direct  transloca'on

5'  scanning

Ribosome  shun'ng–35s  mRNAs  of  plant  pararetroviruses

–late  adenovirus  mRNAs

–P/C  mRNA  of  Sendai  virus

ShunNng  is  predicted  to  decrease  dependence  of  mRNAs  for  eIF4F  during  iniNaNon  by  reducing  the  need  for  mRNA  unwinding

15

Internal  ini'a'on

16

IRES  =  internal  ribosome  entry  site17

18

eIF4G  footprint

19

Hepa''s  C  virus  IRES

• 40S  subunit  binds  IRES  without  iniNaNon  proteins

• eIF3  binds  IRES,  needed  for  subunit  joining

• HCV  coding  sequence  is  part  of  the  IRES

20

all  eIFs

all  eIFs  except  eIF4E

eIF2,  eIF3

21

• Viral  IRESes– Picornaviruses– Flaviviruses  (hepaNNs  

C  virus)– PesNviruses  (bovine  

viral  diarrhea  virus,  classical  swine  fever  virus)

– Retroviruses  (SIV,  MMLV,  HTLV,  FLV)

– Insect  picorna-­‐like  viruses  (cricket  paralysis  virus,  PlauNa  stali  intesNne  virus)

•  Cellular  IRESes–  BiP–  c-­‐Myc–  Antennapaedia–  Ornithine  decarboxylase–  Fibroblast  growth  factor–  Vascular  endothelial  growth  factor

–  protein  kinase  p58PITSLRE  

22

AminoacylPepNdylExit

23

Methionine-­‐independent  ini'a'on

• Can  assemble  80S  ribosomes  without  any  eIFs  or  Met-­‐tRNAi

• RNA  mimics  tRNAi

24

RNA  genome  of  cricket  paralysis  virus

Binds  40S  ribosome  independent  of  iniNaNon  proteins

25

26

Maximizing  the  coding  capacity  of  the  viral  genome

• Polyprotein  (Picornaviridae,  Flaviviridae,  Togaviridae,  Arenaviridae,  Bunyaviridae,  Retroviridae)

• Internal  iniNaNon  (IRES)  (Picornaviridae,  Flaviviridae)

• Leaky  scanning  (Retroviridae, Paramyxoviridae)

• Re-­‐iniNaNon  of  translaNon  (Orthomyxoviridae,  Herpesviridae)

• Suppression  of  terminaNon  (Retroviridae, Togaviridae)

• Ribosomal  frameshiWing  (Retroviridae)

27

Polyprotein  synthesis

28

Leaky  scanning

29

Suppression  of  termina'on

eRF1  and  eRF3  recognize  all  3  stop  codons  (UAA,  UAG,  UGA

But  occasionally  stop  codons  may  be  recognized  by  a  charged  tRNA

30

Suppression  of  termina'on

31

Suppression  of  termina'on

• Suppressor  tRNAs:  recognize  terminaNon  codons  and  insert  specific  amino  acid,  e.g.  suppressor  tRNA  that  inserts  selenocysteine  for  UGA

• Normal  tRNAs  may  misread  terminaNon  codons

32

Ribosomal  frameshiOing

33

Model  for  -­‐1  frameshiOing

34

Regula'on  of  transla'on  in  virus-­‐infected  cells

35

36

eIF2α  kinases

37

PKR

38

39

PKR  and  cellular  an'viral  response

• PKR  induced  and  acNvated  by  virus  infecNon

• Leads  to  inhibiNon  of  host  translaNon,  apoptosis

• Different  viral  mechanisms  have  evolved  to  inacNvate  the  PKR  pathway

40

Adenovirus  VA  RNA  I  prevents  ac'va'on  of  PKR

dsRNA

active

VA RNA I

eIF2α subunitphosphorylation

P P

inactive

PKR

inactive

no phosphorylation of eIF2α subunit

active protein synthesis

protein synthesis inhibited

41

Vaccinia  virus  encoded  pseudosubstrates  mimic  eIF2α

42

Targets  of  viral  inhibitors  of  eIF2α  phosphoryla'on

43

44

Regula'on  of  eIF4F  ac'vity

• eIF4F  =  eIF4G  +  eIF4E  +  eIF4A

• Cleavage  of  eIF4GI,  II  in  cells  infected  with  picornaviruses

• Cleavage  by  proteinases  2Apro,  Lpro

• Viral  IRES  does  not  require  intact  eIF4G

45

46

47

microRNA  (miRNA)

• Small  non-­‐coding  RNAs  encoded  within  the  viral  or  cellular  genome

• Transcribed  as  60-­‐70  nt  pre-­‐miRNA  by  either  pol  II  or  pol  III

• Processed  by  the  cell  to  ~21  nt

48

miRNA

• >1000  human  miRNAs,  regulate  ~60%  of  protein-­‐coding  genes

• Control  gene  expression  post-­‐transcripNonally  via  either  repression  of  translaNon  or  mRNA  degradaNon

• Mainly  target  3’-­‐UTR  of  RNA

49

miRNA

• miRNA  funcNon  in  a  complex,  the  miRNPs,  composed  of  Ago,  Dicer,  and  TRBP

• Complementarity  to  3’-­‐UTR  determines  whether  the  mRNA  is  degraded  or  translaNon  is  repressed

50

Two  ways  that  miRNAs  regulate  transla'on

51

Viruses  and  cellular  miRNAs

• miR-­‐122  is  a  liver-­‐specific  miRNA  required  for  HCV  replicaNon

• miRNAs  target  viral  or  cellular  genes  needed  for  viral  replicaNon

52

Virus-­‐encoded  miRNAs

• Viral  miRs  block  apoptosis,  facilitate  immune  escape,  prevent  cell  cycle  arrest,  promote  latency

53

top related