© a. nitzan, tau introduction to electron transport in molecular systems i. benjamin, a. burin, b....

Post on 22-Dec-2015

219 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

© A. Nitzan, TAU© A. Nitzan, TAU

Introduction to electron Introduction to electron transport in molecular systemstransport in molecular systems

I. Benjamin, A. Burin, B. Davis, S. Datta, D. Evans, M. Galperin, A. Ghosh, H. Grabert, P. Hänggi, G. Ingold, J. Jortner, S. Kohler, R. Kosloff, J. Lehmann, M. Majda, A. Mosyak, V. Mujica, R. Naaman, U. Peskin, M. Ratner, D. Segal, T. Seideman, H. Tal-Ezer

Thanks

Reviews: Annu. Rev. Phys. Chem. 52, 681– 750 (2001) [http://atto.tau.ac.il/~nitzan/nitzanabs.html/#213]

Science, 300, 1384-1389 (2003); MRS Bulletin, 29, 391-395 (2004); Bulletin of the

Israel Chemical Society, Issue 14, p. 3-13 (Dec 2003) (Hebrew)

© A. Nitzan, TAU

PART BPART B: Molecular : Molecular conduction: Main results and conduction: Main results and phenomenologyphenomenology

A. Nitzan (nitzan@post.tau.ac.il;

http://atto.tau.ac.il/~nitzan/nitzan.html)

PART APART A: Introduction: electron : Introduction: electron transfer in molecular systemstransfer in molecular systems

PART CPART C: Inelastic effects in : Inelastic effects in molecular conductionmolecular conduction

Introduction to electron transport in molecular systems

http://atto.tau.ac.il/~nitzan/tu04-X.ppt (X=A,B,C)

© A. Nitzan, TAU© A. Nitzan, TAU

Molecules as conductorsMolecules as conductors

m o lecule

© A. Nitzan, TAU

Aviram Ratner

Abstract

The construction of a very simple electronic device, a rectifier, based on the use of a single organic molecule is discussed. The molecular rectifier consists of a donor pi system and an acceptor pi system, separated by a sigma-bonded (methylene) tunnelling bridge. The response of such a molecule to an applied field is calculated, and rectifier properties indeed appear.

Molecular Rectifiers

Arieh Aviram and Mark A. RatnerIBM Thomas J. Watson Research Center, Yorktown Heights, New

York 10598, USADepartment of Chemistry, New York New York University, New

York 10003, USA

Received 10 June 1974

© A. Nitzan, TAU

Xe on Ni(110)

© A. Nitzan, TAU

Feynman

Chad Mirkin (DPN)

© A. Nitzan, TAU

Moore’s “Law”

© A. Nitzan, TAU

Moore’s 2nd law

© A. Nitzan, TAU

Molecules get wired

© A. Nitzan, TAUCornell group

© A. Nitzan, TAU

Science, Vol 302, Issue 5645, 556-559 , 24 October 2003MOLECULAR ELECTRONICS:

Next-Generation Technology Hits an Early Midlife CrisisRobert F. Service

Researchers had hoped that a new revolution in ultraminiaturized electronic gadgetry lay almost within reach. But now some are saying the future must wait

Two years ago, the nascent field of molecular electronics was riding high. A handful of research groups had wired molecules to serve as diodes, transistors, and other devices at the heart of computer chips. Some had even linked them together to form rudimentary circuits, earning accolades as Science's 2001 Breakthrough of the Year (Science, 21 December 2001, p. 2442). The future was so bright, proponents predicted that molecular electronics-based computer chips vastly superior to current versions would hit store shelves in 2005

Now, critics say the field is undergoing a much-needed reality check. This summer, two of its most prominent research groups revealed that some of their devices don't work as previously

thought and may not even qualify as molecular

electronics. And skeptics are questioning whether

labs will muster commercial products within the next

decade, if at all

© A. Nitzan, TAU

IEEE TRANSACTIONS ON ELECTRON DEVICES VOL.43OCTOBER 1996 1637

Need for Critical AssessmentRolf Landauer,Life Fellow,IEEE

AbstractAdventurous technological proposals are subject to inadequate critical assessment. It is the proponents who organize meetings and special issues. Optical logic, mesoscopic switching devices and quantum parallelism are used to illustrate this problem.

This editorial,disguised as a scientific paper, is obviously a plan for more honesty. We do not, in the long run, build effective public support for science and technology by promising more than we can deliver.

© A. Nitzan, TAU

Feynman

• For a successful Technology, reality must take precedence over public relations, for nature cannot be fooled

© A. Nitzan, TAU

First Transport Measurements through Single Molecules

Single-wall carbon nanotube on Pt

Dekker et al. Nature 386(97)

Nanopore

Reed et al. APL 71 (97)

Break junction: dithiols between gold

Molecule lying on a surface Molecule between

two electrodes

Dorogi et al. PRB 52 (95) @ Purdue

Au(111)

Pt/Ir Tip

SAM1 nm

~1-2 nm

Self-assembled monolayers

Adsorbed molecule addressed by STM tip

C60 on gold

Joachim et al. PRL 74 (95)

STMtip

Au

Reed et al. Science 278 (97) @ Yale

Nanotube on Au

Lieber et al. Nature 391 (98)

© A. Nitzan, TAU

Park et. al. Nature 417,722-725 (2002)

Datta et al

© A. Nitzan, TAU

Weber et al, Chem. Phys. 2002

© A. Nitzan, TAU

Electron transfer in DNA

© A. Nitzan, TAU

loge of GCGC(AT)mGCGC conductance vs length (total number of base pairs). The solid line is a linear fit that reflects the exponential dependence of the conductance on length. The decay constant, , is determined from the slope of the linear fit. (b) Conductance of (GC)n vs 1/length (in total base pairs).

Xu et al (Tao), NanoLet (2004)

=0.43Å-1

© A. Nitzan, TAU

Electron transmission Electron transmission processes in molecular processes in molecular

systemssystems Electron transferElectron transfer Electron transmissionElectron transmission ConductionConduction Parameters that affect molecular Parameters that affect molecular

conductionconduction Eleastic and inelastic transmissionEleastic and inelastic transmission Coherent and incoherent conductionCoherent and incoherent conduction Heating and heat conductionHeating and heat conduction

© A. Nitzan, TAU

Activated rate processesActivated rate processes

E B

0

B

- frictio nr e ac t i o nc o o r di nate

KRAMERS THEORY:

Low friction limit

High friction limit

Transition State theory

0 /

2B B

TSTE k Tk e

/

2B Bo B B

TSTE k Tk e k

/0

B BE k TB

B

k J ek T

(action)

4k DR

Diffusion controlled

rates

Bk TD

m

© A. Nitzan, TAU

The physics of transition The physics of transition state ratesstate rates

0

2BEe

0

( ,TST B f BP xk d P x

v v v v)

212

212

0 1

2

m

m

d e

md e

v

v

vv

v

20exp

( )2exp ( )

B

B

B EB E

E mP x e

dx V x

Assume:

(1) Equilibrium in the well

(2) Every trajectory on the barrier that goes out makes it

E B

0

B

r e ac t i o nc o o r di nate

© A. Nitzan, TAU

Theory of Electron TransferTheory of Electron Transfer

Activation energyActivation energy Transition probabilityTransition probability Rate – Transition state theory or Rate – Transition state theory or

solvent controlledsolvent controlled

© A. Nitzan, TAU

Electron transfer in polar Electron transfer in polar mediamedia

•Electron are much faster than nuclei

Electronic transitions take place in fixed nuclear configurations

Electronic energy needs to be conserved during the change in electronic charge density

c

q = + e

b

q = + e

a

q = 0

Electronic transition

Nuclear relaxation

© A. Nitzan, TAU

q = 1q = 0 q = 1q = 0

Electron transfer

Electron transition takes place in unstable nuclear configurations obtained via thermal fluctuations

Nuclear motion

Nuclear motion

q= 0q = 1q = 1q = 0

© A. Nitzan, TAU

Electron transferElectron transfer

E aE A

E b

E

e ne r g y

ab

X a X tr X b

© A. Nitzan, TAU

Transition state theoryTransition state theory of of electron transferelectron transfer

Adiabatic and non-adiabatic ET processesE

R

E a(R )

E b(R )

E 1(R )

E 2(R )

R *

tt= 0

V ab

Landau-Zener problem

*

0

( , ) ( )b ak dRR P R R P R

2,

*

2 | |( ) 1 exp a b

b a

R R

VP R

R F

*

2,| |

2Aa b E

NAR R

VKk e

F

Alternatively – solvent control

© A. Nitzan, TAU

Electron transfer – Marcus Electron transfer – Marcus theorytheory

(0) (0) (1) (1)B BA Aq q q q (0) (0) (1) (1)

B BA Aq q q q

D 4

E D 4 P 1

4sP E E

1

4e

eP E

4s e

nP E

They have the following characteristics:(1) Pn fluctuates because of thermal motion of solvent nuclei.(2) Pe , as a fast variable, satisfies the equilibrium relationship (3) D = constant (depends on only)Note that the relations E = D-4P; P=Pn + Pe are always satisfied per definition, however D sE. (the latter equality holds only at equilibrium).

We are interested in changes in solvent configuration that take place at constant solute charge distribution

© A. Nitzan, TAU

The Marcus parabolasThe Marcus parabolas

0 1 0( ) Use as a reaction coordinate. It defines the state of the medium that will be in equilibrium with the charge distribution . Marcus calculated the free energy (as function of ) of the solvent when it reaches this state in the systems =0 and =1.

20 0( )W E 2

1 1( ) 1W E

21 1 1 1 1

2 2e s A B AB

qR R R

© A. Nitzan, TAU

Electron transfer: Electron transfer: Activation energyActivation energy

2[( ) ]

4b a

A

E EE

21 1 1 1 1

2 2e s A B AB

qR R R

E aE A

E b

E

e ne r g y

ab

a tr b

20 0( )W E

21 1( ) 1W E

© A. Nitzan, TAU

Electron transfer: Effect of Electron transfer: Effect of Driving (=energy gap)Driving (=energy gap)

© A. Nitzan, TAU

Experimental confirmation of the inverted regime

Miller et al, JACS(1984)

Marcus Nobel Prize: 1992

© A. Nitzan, TAU

Electron transfer – the Electron transfer – the couplingcoupling

• From Quantum Chemical Calculations

•The Mulliken-Hush formula

max 12| |DADA

HeR

• Bridge mediated electron transfer

© A. Nitzan, TAU

Bridge assisted electron Bridge assisted electron transfertransfer

D A

B 1 B 2 B 3

D A

12

3V D 1

V 1 2 V 2 3

V 3 A

1

1 1

1

, 1 , 11

ˆ

1 1

1 1

N

D j Aj

D D AN NA

N

j j j jj

H E D D E j j E A A

V D V D V A N V N A

V j j V j j

, 1 /,j B j j B D AE E V E E

© A. Nitzan, TAU

1

1 1 12 1

21 2 23 2

32

0 0 0

0 0

00

0 0 0

0 0 0

D D D

D

NA

NA A A

N N

E E V c

E E V c

V

V E E V c

V

E E V

V E c

c

E

1 12 1

21 2 23 2

32

1 1,

,

1

1

0 0

00 0

0

0 0

N N N

NN N

D

NA AN

DV cE E V cV E E V c

V

E E V

cV E E V c

1 1 0

0

D D D

A A AN N

E E c V c

E E c V c

ˆ I c uB B BH E

( )ˆc uBB G

1( )ˆ ˆIBB BG E H

D D A A j jjc c c

© A. Nitzan, TAU

Effective donor-acceptor Effective donor-acceptor couplingcoupling

0

0

D DA

A AD

D A

A D

E c c

V c

E V

E E c

( ) ( )1 111

ˆ ˆ;B BD D D D A A AN NN NAE E V G V E E V G V

( ) ( ) *1 11 1

ˆ ˆ;B BDA D NA AD AN D DAN NV V G V V V G V V

12 23 1,1

/ 1 / 2 / 1 /

1 1 1 1ˆ ...B N NN

D A D A D A N D A N

G V V VE E E E E E E E

(1/ 2) '1

0/

N

NbD NA BDA

B D A B

V V VV V e

V E E

/

2' ln B

D A B

V

b E E

0 0 0 0 0 0 ...G G G VG G VG VG

© A. Nitzan, TAU

Marcus expresions for non-Marcus expresions for non-adiabatic ET ratesadiabatic ET rates

2

2 (1

2)1 ( )

|

)2

| ( )

(

2

BD

DA

D

D A AD

N ANA D

V

V

E

GV E

k

E

F

F

2 / 4

( )4

BE k T

B

eE

k T

F

Bridge Green’s Function

Donor-to-Bridge/ Acceptor-to-bridge

Franck-Condon-weighted DOS

Reorganization energy

© A. Nitzan, TAU

Bridge mediated ET rateBridge mediated ET rate

~ ( , )exp( ' )ET AD DAk E T RF

’ (Å-1)=

0.2-0.6 for highly conjugated chains

0.9-1.2 for saturated hydrocarbons

~ 2 for vacuum

© A. Nitzan, TAU

Incoherent hoppingIncoherent hopping

........

0 = D

1 2 N

N + 1 = A

k 1 2

k 1 0 = k 0 1 e x p (-E 1 0 ) k N ,N + 1 = k N + 1 ,N e x p (-E 1 0 )

0 1,0 0 0,1 1

1 0,1 2,1 1 1,0 0 1,2 2

1, 1, , 1 1 , 1 1

1 , 1 1 1,

( )

( )N N N N N N N N N N N N

N N N N N N N

P k P k P

P k k P k P k P

P k k P k P k P

P k P k P

constant STEADY STATE SOLUTION

© A. Nitzan, TAU

ET rate from steady state ET rate from steady state hoppinghopping

0,1 2,1 1 1,0 0 1,2 2

1, 1, ,

1 1,

1 1

0 ( )

0 ( )N N N N N N N

N N N N

N

k k P k P k P

k k P k P

P k P

/

1,0

1

1

B BE k T

D A N

N A D

kek k

k kN

k k

0D Ak P

© A. Nitzan, TAU

Dependence on Dependence on temperaturetemperature

The integrated elastic (dotted line) and activated (dashed line) components of the transmission, and the total transmission probability (full line) displayed as function of inverse temperature.

Parameters are as in Fig. 3.

© A. Nitzan, TAU

The photosythetic reaction The photosythetic reaction centercenter

Michel - Beyerle et al

© A. Nitzan, TAU

Dependence on bridge Dependence on bridge lengthlength

Ne

11 1up diffk k N

© A. Nitzan, TAU

DNA (Giese et al 2001)DNA (Giese et al 2001)

© A. Nitzan, TAU

Steady state evaluation Steady state evaluation of ratesof rates

Rate of water flow depends linearly on water height in the cylinder

Two ways to get the rate of water flowing out:

(1)Measure h(t) and get the rate coefficient from k=(1/h)dh/dt

(2)Keep h constant and measure the steady state outwards water flux J. Get the rate from k=J/h -- Steady state rate

h

© A. Nitzan, TAU

Steady state quantum Steady state quantum mechanicsmechanics

{ }l l0

V0l

Starting from state 0 at t=0:

P0 = exp(-t)

= 2|V0l|2L (Golden Rule)

Steady state derivation:

0 0 0 sl ll

dC iE C i V C

dt

0( ) ( ) 0 ( )ll

t C t C t l 0( / )

0 0i E tC c e

0 0 ; alll l l ld

C iE C iV C ldt

l

© A. Nitzan, TAU

0( / )0 0

i E tC c e

0 0 ; alll l l ld

C iE C iV C ldt

(1 / 2) lC

0( / ) 0

0

( ) ;/ 2

i E t lsl l l

l

V cC t c e c

E E i

2 2 20 0 2 2

0

2 200 0 0

//

/ 2

2

l ll l l

l ll

J C C VE E

C V E E

0

2 20 0 0 02

0

2 2/

l

l l l LE El

Jk V E E V

C

pumping damping

© A. Nitzan, TAU

Resonance scatteringResonance scattering

{ }l1

V1r

r l

V1l

0

0H H V

0 0 10

0 0 1 1 l rl r

H E E E l l E r r

0,1 1,0 ,1 1, ,1 1,0 1 1 0 1 1 1 1l l r r

l r

V V V V l V l V r V r

© A. Nitzan, TAU

Resonance scatteringResonance scattering0

1 1 1 1,0 0 1, 1,

,1 1

,

( /

1

)0

1

0

( / 2)

( / 2)

l l r rl r

r r r r

l

i E t

r

l ll l

C iE C iV C i V C i V C

C iE C iV C

C iE C iV C

C c E

C

C

0( ) exp ( / )j jC t c i E t j = 0, 1, {l}, {r}

,1 1

0 / 2r

rr

V cc

E E i

,1 1

0 / 2l

ll

V cc

E E i

For each r and l

© A. Nitzan, TAU

,1 1

0 / 2r

rr

V cc

E E i

1, 1 0 1( )r r RrV c iB E c

1 1

21

2

1

21

1

11

1

( ) (1 / 2) ( )

( ) 2 | | ( )

| | (

| |( )

)( )

r

R R

R r R r

rR

E E

r R rR

r

rr

VB E

E EE i E

E V E

V EE

i

PP dEE E

1 0 1 1,0 0 1, 1,0 l l r rl ri E E c iV c i V c i V c

1 1

wide ban

( ) (

d approximatio

)

n

1/ 2R RB E i

21

1| |

( ) rR

rr

VB E

E E i

SELF

ENERGY

© A. Nitzan, TAU

0 ,1 10 ( / 2)r r r ri E E c iV c c

1,0 01

0 1 1 0( / 2) ( )

V cc

E E i E

1 0 1 0 1 0( ) ( ) ( )L RE E E

2 2 2,1 1,0 02 22 2 2 2

0 0 1 1 0

| | | | | || | | |

( ) ( / 2) ( ) / 2

rr r

r

V V cc C

E E E E E

22 1,00 21 0

0 02 20 1 1 0

| | ( )/ | |

( ) / 2

RR r

r

V EJ c c

E E E

21 02 r rV E E

© A. Nitzan, TAU

Resonant tunnelingResonant tunneling

{ }l1

V1r

r l

V1l

0

21,0 21

0 02 20 1 1

| || |

/ 2

RR

VJ c

E E

|1 >

|0 >

x

V (x )

RL

. . . .

. . . .

. . . .

. . . .

. . . . . . . .

(a )

(b)

( c)

L

R

© A. Nitzan, TAU

Resonant TunnelingResonant Tunneling|1 >

|0 >

x

V (x )

RL

. . . .

. . . .

. . . .

. . . .

. . . . . . . .

(a )

(b)

( c)

L

R

21,0 21

0 02 20 1 1

| || |

/ 2

RR

VJ c

E E

2 00 0 0 0incident flux ( ) | | ( )R

pJ E c E

mL T TTransmission Coefficient

102 ( )L E

1 0 1 0

0 2 20 1 1 0

1 1 1

( ) ( )( )

( ) / 2

L R

R L

E EE

E E E

T

© A. Nitzan, TAU

Resonant Transmission – 3dResonant Transmission – 3d

|1 >

|0 >

x

V (x )

RL

. . . .

. . . .

. . . .

. . . .

. . . . . . . .

(a )

(b)

( c)

R

L 1 0 1 0

0 2 20 1 1 0

1 1 1

( ) ( )( )

( ) / 2

L R

R L

E EE

E E E

T

1d

0

21 0 1 002 2

0 1 1 0

( ) ( ) ( )1| |

2 ( ) / 2

L R L R

E E

dJ E E Ec

dE E E E

3d: Total flux from L to R at energy E0:

If the continua are associated with a metal electrode at thermal equilibrium than 12

0 0 0( ) exp ( ) / 1Bc f E E k T

(Fermi-Dirac distribution)

© A. Nitzan, TAU

CONDUCTIONCONDUCTION

0

20 0

( ) 1( ) | |

2L R

E E

dJ EE c

dE

T

( ))2

( ) (L Rf Ee

I d fE EE

T

1 1

2 21 1

( ) ( )( )

( ) / 2

L RE EE

E E E

T

( ) ( ) ( )f E e f E e E 2

( )2

eI E

T

2 spin states

2

( )e

I E

T

Zero bias conduction ( 0)g

L R

–e|

f(E0) (Fermi function)

© A. Nitzan, TAU

Landauer formulaLandauer formula2

( 0) ( ) ; Fermi energye

g E

T

( ) ( ) ( )L R

eI dE f E f E E

T ( )

dIg

d

1 1

2 21 1

( ) ( )( )

( ) / 2

L RE EE

E E E

T

(maximum=1)

2

112.9

eg K

Maximum conductance per channel

For a single “channel”:

top related