ahmad haj mosa phd defence final

49
Cellular Neural Networks (CNN) Based Robust Classification under Difficult Conditions with Selected Applications in Intelligent Transportation Systems by Dipl.Ing Ahmad Haj Mosa (Univ.Ass.) Advisor: Univ.Prof. Dr. Ing. Kyandoghere Kyamakya ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ Institute of Smart Systems Technologies, Transportation Informatics Group Alpen Adria Universität Klagenfurt

Upload: dr-ahmad-haj-mosa

Post on 20-Feb-2017

64 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Ahmad Haj Mosa Phd Defence Final

Cellular  Neural  Networks  (CNN)  Based  Robust  Classification  under  Difficult  Conditions  with  Selected  Applications  in  Intelligent  Transportation  Systems

by  Dipl.-­‐Ing  Ahmad  Haj  Mosa  (Univ.-­‐Ass.)  Advisor:  Univ.-­‐Prof.  Dr.  Ing.  Kyandoghere  Kyamakya  

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Institute  of  Smart  Systems  Technologies,  Transportation  Informatics  Group  Alpen  

Adria  Universität  Klagenfurt

Page 2: Ahmad Haj Mosa Phd Defence Final

Outline

• Background  and  Motivation  

• General  Objectives    

• State-­‐of-­‐the-­‐art  

• CNN  Framework  1:  Soft  Radial  Basis  CNN  (SRB-­‐CNN)  

• Case  study  1:  Truck  detection  using  a  single  presence  detector  

• CNN  Framework  2:  Support  Vector  Machine  SRB-­‐CNN  (SVM-­‐SRB-­‐CNN)  

• Case  study  2:  Rain  drops  detection    

• CNN  Framework  3:  Online  Self  Adaptive  CNN  (OSA-­‐CNN)  

• Case  study  3:  Traffic  flow  time  series  forecast    

• Case  study  4:  Business  time  series  forecast    

• Quality  and  significance  of  results

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 2

Page 3: Ahmad Haj Mosa Phd Defence Final

Background  and  Motivation

• Futures  Trends  of  Big  Data  [1]:    

๏ Starting  from  2016,  Machine  Learning  will  have  a  growth  rate  of  65%  

• It  can  be  defined  as  training  the  machine  to  act  without  being  explicitly  programmed  

• The  main  machine  learning  techniques  are:  

๏ Clustering  

๏ Classification  

๏ Time  series  forecast  

๏ Regression

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 3

Machine Learning Big Data

Google  Trends  Interest  Over  Time    %-­‐Big  Data-­‐Machine  Learning

2012                    2013                  2014                    2016

100  

75  

50  

25  

0

[1]  BIG  DATA  Present  and  Future:  BBVA  Inovation  Center  

Page 4: Ahmad Haj Mosa Phd Defence Final

• Time  Series  Forecast

Background  and  MotivationALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 4

• Object  Classification

Feature  1  (i.e  Color  of  an  object)  

Feature  2  (i.e  Size  of  a

n  ob

ject)  

Class  AClass  B

Time

Ground  truthPredicted Current  Time

Observatio

ns  (i.e  Tem

perature)Classifier

Page 5: Ahmad Haj Mosa Phd Defence Final

Background  and  MotivationALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 5

• The  high  cost  of  data  acquisition,  the  uncertainty  in  sensors  and  the  lack  of  informative  features  bring  together  the  following  challenges:  

• Classes  Imbalance  (CI)  • Classes  Overlap  or  nonlinearity  in  case  of  forecast  (CO)  • Outliers  and  Noise  (ON)  • Learning  Complexity  (LC)  • The  presence  of  a  Stochastic  Process  (SP)  • Low  Generalisation  (LG)  

• These  challenges  are  often  simultaneously  faced  in  the  frame  of  intelligent  transportation  systems  (ITS)

Page 6: Ahmad Haj Mosa Phd Defence Final

Outline

• Background  and  Motivation  

• General  Objectives    

• State-­‐of-­‐the-­‐art  

• CNN  Framework  1:  Soft  Radial  Basis  CNN  (SRB-­‐CNN)  

• Case  study  1:  Truck  detection  using  a  single  presence  detector  

• CNN  Framework  2:  Support  Vector  Machine  SRB-­‐CNN  (SVM-­‐SRB-­‐CNN)  

• Case  study  2:  Rain  drops  detection    

• CNN  Framework  3:  Online  Self  Adaptive  CNN  (OSA-­‐CNN)  

• Case  study  3:  Traffic  flow  time  series  forecast    

• Case  study  4:  Business  time  series  forecast    

• Quality  and  significance  of  results

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 6

Page 7: Ahmad Haj Mosa Phd Defence Final

General  objectives

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 7

• Propose  a  reliable    and  robust  framework  to  solve  hard  “classification  and  prediction  challenges”  and  validate  it  in  the  frame  of  four  real-­‐world  case  studies:  

•Case  study  1:  Classification  in  the  context  of  a  “car/truck  detection”  task  by  involving  a  single  presence  sensor  in  the  frame  of  advanced  traffic  management  systems  (ATMS)  in  ITS  

•Case  study  2:  Classification  in  the  context  of  a  “drops  detection”  task  in  the  frame  of  a  low-­‐level  image  processing  for  advanced  driver  assistance  systems  (ADAS)  

•Case  study  3:  Prediction  in  the  context  of  a  “traffic  flow”  related  time  series  forecast  in  the  frame  of  an  Adaptive  Traffic  Control  in  ITS  

•Case  study  4:  Prediction  in  the  context  of  various  “business”  time  series  forecast    

Classification

Prediction

Page 8: Ahmad Haj Mosa Phd Defence Final

Outline

• Background  and  Motivation  

• General  Objectives    

• State-­‐of-­‐the-­‐art  

• CNN  Framework  1:  Soft  Radial  Basis  CNN  (SRB-­‐CNN)  

• Case  study  1:  Truck  detection  using  a  single  presence  detector  

• CNN  Framework  2:  Support  Vector  Machine  SRB-­‐CNN  (SVM-­‐SRB-­‐CNN)  

• Case  study  2:  Rain  drops  detection    

• CNN  Framework  3:  Online  Self  Adaptive  CNN  (OSA-­‐CNN)  

• Case  study  3:  Traffic  flow  time  series  forecast    

• Case  study  4:  Business  time  series  forecast    

• Quality  and  significance  of  results

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 8

Page 9: Ahmad Haj Mosa Phd Defence Final

Background  and  MotivationALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 9

General  machine  learning  system  architecture  

Raw  Input  Data

Data  Preprocessing

Decision  Function

Output

Features  Extraction

Page 10: Ahmad Haj Mosa Phd Defence Final

State-­‐of-­‐the-­‐art  ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 10

Strategy  1  to  cope  with  the  challenges:  Manipulation  of  the  feature  space    

Related  works Target  challenge

• Unsupervised  feature  learning  using  Stacked  Sparse  Auto  Encoders  (SSAN)  Hinton  [2006];  Lee  [2006]  or  K-­‐means  clustering  Adam  [2011]  

•    Features  de-­‐correlagon  and  whitening  methods  such  as  Principle  Component  Analysis  (PCA)  Le  [2013]  and  Reconstruc\on  Independent  Component  Analysis  (RICA)  Le  [2011]  

•    Hybrid  methods  consider  separagon  of  feature  space  into:  non-­‐overlapped,  purely  overlapped  and  uncertainty  region  Varraboot  [2015]  

•      Manipulagng  the  class  distribugon  to  overcome  the  imbalance  problem  Drummond  [2003];  Laurikkala  [2011]    

• CO;  LG;  ON  

• CO;  LG;  ON  

• CO  

• CI

CI:  Class  Imbalance,  CO:  Class  Overlap,  LG:  Low  Generalisation,  ON:  Outliers  and  Noise

Page 11: Ahmad Haj Mosa Phd Defence Final

State-­‐of-­‐the-­‐art  ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 11

Strategy  2  for  address  the  challenges:  Adapt  the  Decision  function  

Related  work Target  challenge

• Probabilisgc  decision  funcgons  such  as  Naive  Bayes  classifier  Rish  [2001];  Probabilis\c  Neural  Networks  Mao  [2000]    

• Margin  classifiers  such  as  Support  Vector  Machine  (SVM)  Mark  [2010]  

•  Ensemble  classificagon  algorithms  Stefan  [2016]  

•  Kernel  Methods  such  as  Radial  Basis  Func\on  (RBF)  Shuling  [2016]  

• Recurrent  Neural  Network  (RNN)  such  as  CNN  Chua  [2005]  and  Long  Short  Term  Memory  LSTM  Graves[2016]  

• Extreme  Learning  Machines  (ELM)  Yang  [2016]  and  Echo  State  Network  (ESN)  Olga  [2015]  

• SP  

• LG;  CO  

• LG;  CO  

• LG;  CO;  SP  

• LG;  CO;  SP  

• CO;  SP;  LC  

CO:  Class  Overlap,  LG:  Low  Generalisation,  ON:  Outliers  and  Noise,  SP:  Stochasticity,  LC:  Learning  Complexity  

Page 12: Ahmad Haj Mosa Phd Defence Final

Outline

• Background  and  Motivation  

• General  Objectives    

• State-­‐of-­‐the-­‐art  

• CNN  Framework  1:  Soft  Radial  Basis  CNN  (SRB-­‐CNN)  

• Case  study  1:  Truck  detection  using  a  single  presence  detector  

• CNN  Framework  2:  Support  Vector  Machine  SRB-­‐CNN  (SVM-­‐SRB-­‐CNN)  

• Case  study  2:  Rain  drops  detection    

• CNN  Framework  3:  Online  Self  Adaptive  CNN  (OSA-­‐CNN)  

• Case  study  3:  Traffic  flow  time  series  forecast    

• Case  study  4:  Business  time  series  forecast    

• Quality  and  significance  of  results

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 12

Page 13: Ahmad Haj Mosa Phd Defence Final

CNN  Background

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 13

• Cellular  Neural  Network  (CNN)  is  selected  to  be  the  core  of  the  used  classifica\on  pla`orm  because:  

๏  CNN  provides  easy  and  flexible  implementability  in  both  solware  and  hardware  (analog  and  digital)  Roska[1993]  

๏  CNN  has  a  huge  parallelism  inherent  property  Ho[2008]  

๏  Models  dynamic  temporal  behaviour  through  its  internal  memory  Graves[2009]  

๏  CNN  applicagons  in  classificagon  show  a  remarkable  performance  according  to  published  related  works  Milanova[2000];  Tang[2009];  Perfem[2007]

• However,  there  are  two  limita\ons:  

๏  In  tradigonal  CNN  architectures,  state  and  output  spaces  generally  have  idengcal  dimensions  Chua[2002]  

๏  The  single  nonlinear  part  is  the  output  term  in  the  state  equagons  

๏  Generally  only  one  single  linear  funcgon  in  tradigonal  CNN  architectures

Page 14: Ahmad Haj Mosa Phd Defence Final

CNN  Background  (traditional  CNN)

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 14

+ ∫ ( )

-1Input from Neighborhood

Feedback from Neighborhood

Bias

Control Te mplate

Feedback Template

Cell OutputLocal Input• CNN  is  idengfied  by:  

๏Feedback  weights            ๏Control  weights  ๏Bias  

Page 15: Ahmad Haj Mosa Phd Defence Final

Soft  Radial  Basis  Cellular  Neural  Network  (SRB-­‐CNN)    

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 15

Input layer

Inner layer

Output layer

+ ∫

–1

Tansig∑ sigmoid

-2 0 2

01-2 0 2

0

1

co

ro

v1

vjyi–1, j–1

y1,1y1,2

yro,co

yi+1, j+1

xi, j

yi, j

yi, j

Di.jλi.j

Ai,j

Bi.j

Ci.j

u1u2

un

v2 vg

Wi.j

GRB

Page 16: Ahmad Haj Mosa Phd Defence Final

Soft  Radial  Basis  Cellular  Neural  Network  (SRB-­‐CNN)    

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 16

Soft  Radial  Basis  CNN

Nonlinearity  through  RBF

Input layer

Inner layer

Output layer

+ ∫

–1

Tansig∑ sigmoid

-2 0 2

01-2 0 2

0

1

co

ro

v1

vjyi–1, j–1

y1,1y1,2

yro,co

yi+1, j+1

xi, j

yi, j

yi, j

Di.jλi.j

Ai,j

Bi.j

Ci.j

u1u2

un

v2 vg

Wi.j

GRB

Page 17: Ahmad Haj Mosa Phd Defence Final

Outline

• Background  and  Motivation  

• General  Objectives  

• State-­‐of-­‐the-­‐art  

• CNN  Framework  1:  Soft  Radial  Basis  CNN  (SRB-­‐CNN)  

• Case  study  1:  Truck  detection  using  a  single  presence  detector  

• CNN  Framework  2:  Support  Vector  Machine  SRB-­‐CNN  (SVM-­‐SRB-­‐CNN)  

• Case  study  2:  Rain  drops  detection    

• CNN  Framework  3:  Online  Self  Adaptive  CNN  (OSA-­‐CNN)  

• Case  study  3:  Traffic  flow  time  series  forecast    

• Case  study  4:  Business  time  series  forecast    

• Quality  and  significance  of  results

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 17

Page 18: Ahmad Haj Mosa Phd Defence Final

Case  study  1:  Truck  detection  using  a  single  presence  detector

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 18

Single  Inductive  Loops Dual  Inductive  Loops

Distance

TimeOccupancy  Time

Time

Page 19: Ahmad Haj Mosa Phd Defence Final

Case  study  1:  Truck  detection  using  a  single  presence  detector

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 19

Presence  Detector

Head  Way

Green  Light  Phase Red  Light  Phase

Page 20: Ahmad Haj Mosa Phd Defence Final

Case  study  1:  Features  Design  ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 20

•  Considering  three  consecugve  vehicle  signals,  a  total  of  four  features  are  determined:  

1.Vehicle  occupancy  gme  

2.First  derivagves                and  second  derivagves                of  the  occupancy  gme  series

Truck  Pattern   Car  Pattern  

3. Linear divergence ld

0 1 2 3 4 5

12345678

Vehicle Order of Occurrence

Occ

upan

cy D

urat

ion

driving direction

single inductive loop

α1

α2

(a) (b)

Figure 3.5: Figure (a) shows the occupancy di↵erence pattern of a car-in-the-middle pat-tern. Figure (b) shows the occupancy di↵erence pattern of a truck-in-the-middle pattern.a1 and a2 indicate the related foreword and backward slopes which are correlated to thefirst and second derivatives.

using the finite di↵erence approximation Thomas [1995].

fd =occ

tar

� occpred

tstar

� tspred

(3.1)

sd =occ

pred

� 2occtar

+ occsucc

(tstar

� tspred

) ⇤ (tssucc

� tstar

)(3.2)

where occtar

, occpred

and occsucc

indicate the occupancy time of the target, predecessor and

successor vehicles respectively, tstar

, tspred

and tssucc

indicate the time-stamp of target,

predecessor and successor vehicles respectively.

3.4.3 Linear divergence ld

This feature measures the occupancy time orthogonal divergence of the target vehicle

from the interpolation line between the successor and predecessor occupancy; see Fig. 3.6

and Fig. 3.7. The formula given in (3.3) determines the value of this feature:

ld = occtar

� [occtar

(3.3)

where

[occtar

=occ

succ

� occpred

2(3.4)

is the predicted occupancy time, lays in the middle of the connected line between the

successor and predecessor occupancy.

27

3. Linear divergence ld

(a)

0 1 2 3 4 5

12345678

Vehicle Order of OccurrenceO

ccup

ancy

Dur

atio

n

driving direction

single inductive loop

α1

α2

(b)

Figure 3.5: Figure (a) shows the occupancy di↵erence pattern of a car-in-the-middle pat-tern. Figure (b) shows the occupancy di↵erence pattern of a truck-in-the-middle pattern.a1 and a2 indicate the related foreword and backward slopes which are correlated to thefirst and second derivatives.

using the finite di↵erence approximation Thomas [1995].

fd =occ

tar

� occpred

tstar

� tspred

(3.1)

sd =occ

pred

� 2occtar

+ occsucc

(tstar

� tspred

) ⇤ (tssucc

� tstar

)(3.2)

where occtar

, occpred

and occsucc

indicate the occupancy time of the target, predecessor and

successor vehicles respectively, tstar

, tspred

and tssucc

indicate the time-stamp of target,

predecessor and successor vehicles respectively.

3.4.3 Linear divergence ld

This feature measures the occupancy time orthogonal divergence of the target vehicle

from the interpolation line between the successor and predecessor occupancy; see Fig. 3.6

and Fig. 3.7. The formula given in (3.3) determines the value of this feature:

ld = occtar

� [occtar

(3.3)

where

[occtar

=occ

succ

� occpred

2(3.4)

is the predicted occupancy time, lays in the middle of the connected line between the

successor and predecessor occupancy.

27

Page 21: Ahmad Haj Mosa Phd Defence Final

Case  study  1:  Features  Design  ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 21

The  fourth  feature  is:  

• Linear  divergence    

0 1 2 3 4 5

12345678

Vehicle Order of Occurrence

Occ

upan

cy D

urat

ion

driving direction

single inductive loop

0 1 2 3 4 5

12345678

Vehicle Order of Occurrence

Occ

upan

cy D

urat

ion

driving direction

single inductive loop

Truck  Pattern  Car  Pattern  

/ Transportation Research Part C 00 (2016) 1–26 9

(a) (b)

Figure 6. Figure (a) shows the occupancy time orthogonal divergence ld of a car in the middle pattern. Figures (b) shows the ld of a truck in themiddle pattern.

0 1 3 4 6 7

123

Vehicle Order of Occurrence

Occ

upan

cy D

urat

ion

45678910111213

2 5 8 9 10 11 12 13 14

Figure 7. Linear divergence scenario of a truck-like (bigger ld values) versus passenger car (smaller ld values).

5. THE NOVEL CELLULAR NEURAL NETWORKS BASED CLASSIFICATION CONCEPT

5.1. Some general basics on CNNA cellular neural network (CNN) is modeled by a system of di↵erential equations that express the coupling be-

tween adjacent nonlinear processing units. Each unit is called a cell, similarly to its counterpart in the brain. CNNwas first proposed by Chua and Yang (1988) [34]. CNN does integrate the advantages (or strong points) and featuresof both artificial neural networks (ANN) and cellular automata (CA). CNN does however di↵ers from CA by its non-linear dynamical modeling of the relation between cells and from ANN by its local connectivity property. CNN isalso a real-time processor due to its huge parallelism capability and it can be realized/implemented either in software(some form of virtual machine, i.e. a software emulation) or in hardware and thereby either in dedicated analog cir-cuits (see CNN chips [35, 36]) or emulated on top of digital platforms like FPGA and GPU [37, 38]. Recently, somereconfigurable analog platforms like FPAA (field programmable analog array) do o↵er a further CNN implementationalternative [39]. The generally proposed state equation of a 3⇥ 3 neighborhood (or radius=1) CNN cell is given in (5)

9

Page 22: Ahmad Haj Mosa Phd Defence Final

Case  study  1:  Data  Collection  ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 22

Data  accusation0

0,14

0,28

0,42

0,56

0,7

4%14%19%

63%

Car  (Green  Phase) Truck  (Green  Phase)Car  (Red  Phase) Truck  (Red  Phase)

•  30  loops  in  one  Austrian  city  

•A  Video  reference  tool  to  verify  and  label  the  type  of  the  vehicle    

•Over  30000  samples

CI

CI:  Class  Imbalance

Page 23: Ahmad Haj Mosa Phd Defence Final

Case  study  1:  Data  DistributionALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 23

Feature  1  (occupancy  time)

Feature  2  (First  d

erivative)

Observed  Challenges:   CI      CO    SP    ON      LC        LG

CI:  Class  Imbalance,  CO:  Class  Overlap,  LG:  Low  Generalisation,  ON:  Outliers  and  Noise,    LC:  Learning  Complexity,  SP:  Stochasticity  

Page 24: Ahmad Haj Mosa Phd Defence Final

Case  study  1:  Classification  ArchitectureALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 24

 

Vehicle  in  Green  Phase Vehicle  in  Red  Phase

Classifier  1    distinguish  between  a  vehicle  

in  Red  or  Green  phase

Classifier  2    distinguish  between  a  car  or  

truck  in  a  Green  Phase

Classifier  3    distinguish  between  a  car  or  

truck  in  a  Red  Phase

Car   Truck   TruckCar  

Page 25: Ahmad Haj Mosa Phd Defence Final

Case  study  1:  Evaluation  ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 25

•Benchmarking  of  SRB-­‐CNN  with  a  set  of  well  known  classifiers:  •Radial  Basis  Support  Vector  Machine  (RBF-­‐SVM)  •Naive  Bayes  (NBayes)  •Decision  Tree  •Argficial  Neural  Network  (ANN)  

•Evaluagon  metrics:  Accuracy  and  Receiver  Operator  Characteris\c  (ROC)  

False positive rate0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True

pos

itive

rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1ROC for Classifier 3 (Testing Data)

SRB-CNNRBSVMNBayesDescion TreeANN

Classifier  2  (Green  Phase)  Accuracy

0,91

0,917

0,924

0,931

0,938

0,945

0,952

0,959

0,966

0,973

0,98

95%95%

92%94%

98%

SRB-­‐CNN RBF-­‐SVM NBayesDecision  Tree ANN

Classifier  3  (Red  Phase)  Accuracy

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1 81,4%74,3%47,1%

62,9%95,7%

SRB-­‐CNN RBF-­‐SVM NBayesDecision  Tree ANN

ROC  curve  for  Classifier  3  (Red  Phase)

Page 26: Ahmad Haj Mosa Phd Defence Final

Case  study  1:  Concluding  RemarksALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 26

• Highlights:  ๏  A  novel  CNN  based  architecture  (SRB-­‐CNN)  ๏  Design  of  a  novel  Truck  detection  framework  based  on  SRB-­‐CNN  while  addressing  the  six  challenges  ๏  Novel  features  for  Truck  detection  using  a  single  presence  detector  ๏  Benchmark:  it  outperforms  the  state-­‐of-­‐the-­‐art  classification  methods

• SRB-­‐CNN  Framework  1:  How  it  copes  with  the  six  classification  Challenges:  ๏  RICA  outliers  removal  (ON)  ๏  The  novel  multilayers  CNN  that  consider  both  linear  and  nonlinear  mapping  (using  Radial  Basis  Functions)  (CI,  CO,  LG)  ๏  Cascade  of  classifiers  (LG,  CO)  ๏  Oscillation  behaviour  of  CNN  (CI,  CO,  LG,  SP)  ๏  Training  based  on  Particle  Swarm  Optimisation  (PSO)  (LC)

Case  study  1  has  been  described  in  a  paper  accepted  for  publication  (minor  review)  in  the  journal  Transportation  Research  Part  C  (Class  A+)

CI:  Class  Imbalance,  CO:  Class  Overlap,  LG:  Low  Generalisation,  ON:  Outliers  and  Noise,    LC:  Learning  Complexity,  SP:  Stochasticity  

Page 27: Ahmad Haj Mosa Phd Defence Final

Outline

• Background  and  Motivation  

• General  Objectives    

• State-­‐of-­‐the-­‐art  

• CNN  Framework  1:  Soft  Radial  Basis  CNN  (SRB-­‐CNN)  

• Case  study  1:  Truck  detection  using  a  single  presence  detector  

• CNN  Framework  2:  Support  Vector  Machine  SRB-­‐CNN  (SVM-­‐SRB-­‐CNN)  

• Case  study  2:  Rain  drops  detection    

• CNN  Framework  3:  Online  Self  Adaptive  CNN  (OSA-­‐CNN)  

• Case  study  3:  Traffic  flow  time  series  forecast    

• Case  study  4:  Business  time  series  forecast    

• Quality  and  significance  of  results

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 27

Page 28: Ahmad Haj Mosa Phd Defence Final

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZSupport  Vector  Machine  SRB-­‐CNN  (SVM-­‐SRB-­‐

CNN)

0 0.2 0.4 0.6 0.8 1Feature 1

0.5

0.6

0.7

0.8

0.9

1

Feat

ure

2

Class1Class2SVs

0 0.2 0.4 0.6 0.8 1Feature 1

0.5

0.6

0.7

0.8

0.9

1

Feat

ure

2

Class1Class2Kmeans

Page 29: Ahmad Haj Mosa Phd Defence Final

Support  Vector  Machine  SRB-­‐CNN  (SVM-­‐SRB-­‐CNN)

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 29

Image Plan

CNN

+ ∫∑

-1

RBF-SVM

Saturion

-2 0 2

0

1

0 0.2 0.4 0.6 0.8 1Feature 1

0.5

0.6

0.7

0.8

0.9

1

Feat

ure

2

Class1Class2SVs

0 0.2 0.4 0.6 0.8 1Feature 1

0.5

0.6

0.7

0.8

0.9

1

Feat

ure

2

Class1Class2Kmeans

Page 30: Ahmad Haj Mosa Phd Defence Final

Outline

• Background  and  Motivation  

• State-­‐of-­‐the-­‐art  

• General  Objectives    

• CNN  Framework  1:  Soft  Radial  Basis  CNN  (SRB-­‐CNN)  

• Case  study  1:  Truck  detection  using  a  single  presence  detector  

• CNN  Framework  2:  Support  Vector  Machine  SRB-­‐CNN  (SVM-­‐SRB-­‐CNN)  

• Case  study  2:  Rain  drops  detection    

• CNN  Framework  3:  Online  Self  Adaptive  CNN  (OSA-­‐CNN)  

• Case  study  3:  Traffic  flow  time  series  forecast    

• Case  study  4:  Business  time  series  forecast    

• Quality  and  significance  of  results

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 30

Page 31: Ahmad Haj Mosa Phd Defence Final

Case  study  2:  Rain  drops  detection  ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 31

Input  Image Rain  drops  detected

CNN  based  Image  enhancement  

Schwarzlmuller  [2010]  

CNN  based  median  filter  Chua  [1988]

Features  extraction

SVM-­‐CNN  based  rain  drops  detection

• The  edge  features  Katoluas  [2005]  

•  Hue,  Saturagon  and  Value  (HSV)  color  Archarya  [2005]  

•  The  histograms  of  oriented  gradient  (HOG)  Dalal[2005]  

•  Wavelets  features  Tong[2004]

CI      CO      ON      LC        LGChallenges:  

WU  [2010]    Eigen  [2013]

CI:  Class  Imbalance,  CO:  Class  Overlap,  LG:  Low  Generalisation,  ON:  Outliers  and  Noise,    LC:  Learning  Complexity,  SP:  Stochasticity  

Page 32: Ahmad Haj Mosa Phd Defence Final

Case  study  2:  Evaluation  ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 32

Process  Time  on  GPU  (510  x  585  pixels)

0

70ms

140ms

210ms

280ms

350ms

420ms

490ms

560ms

630ms

700ms 563ms676ms684ms

488ms565ms

HOG HSV   HSV  &  HOG WaveletEdges

Accuracy  rate

0,92

0,927

0,934

0,941

0,948

0,955

0,962

0,969

0,976

0,983

0,99

93,54%93,23%

96,1%95,66%

98,25%

HOG HSV   HSV  &  HOG WaveletEdges

Page 33: Ahmad Haj Mosa Phd Defence Final

Case  study  2:  Concluding  RemarksALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 33

• Highlights:  ๏  A  novel  CNN  based  architecture  (SVM-­‐CNN)  ๏  Design  of  a  novel  rain  drops  detection  framework  based  on  SVM-­‐CNN  while  addressing  the  six  challenges  ๏  High  performance  detection  in  real  time  ๏  We  reach  an  accuracy  of  98%  (in  competing  literature  they  reach  approx.  max.  85%  accuracy  Sugimoto  [2012])

• SVM-­‐CNN  Framework  2  vs  Classification  Challenges:  ๏  CNN  base  image  filtering  (ON,  CO)  ๏  SVM-­‐CNN  (CI,  CO,  LG)  ๏  SVM  training  based  on  quadratic  programming  Cottle  [2009]  (LC)  ๏  Oscillation  behaviour  of  CNN  (CI,  CO,  LG,  SP)

Case  study  2  has  been  published  in  a  paper  in  the  journal  of  Real  Time  Image  Processing  (April  2016)  (Class  A)

CI:  Class  Imbalance,  CO:  Class  Overlap,  LG:  Low  Generalisation,  ON:  Outliers  and  Noise,    LC:  Learning  Complexity,  SP:  Stochasticity  

Page 34: Ahmad Haj Mosa Phd Defence Final

Outline

• Background  and  Motivation  

• General  Objectives    

• State-­‐of-­‐the-­‐art  

• CNN  Framework  1:  Soft  Radial  Basis  CNN  (SRB-­‐CNN)  

• Case  study  1:  Truck  detection  using  a  single  presence  detector  

• CNN  Framework  2:  Support  Vector  Machine  SRB-­‐CNN  (SVM-­‐SRB-­‐CNN)  

• Case  study  2:  Rain  drops  detection    

• CNN  Framework  3:  Online  Self  Adaptive  CNN  (OSA-­‐CNN)  

• Case  study  3:  Traffic  flow  time  series  forecast    

• Case  study  4:  Business  time  series  forecast    

• Quality  and  significance  of  results

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 34

Page 35: Ahmad Haj Mosa Phd Defence Final

Case  studies  2  &  3:  Time  Series  Forecast      ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 35

Weekend  day Working  day

Observed  Challenges:   CO    SP    ON      LC      LG

Traffic  flow

Traffic  flow

Weekend  day Working  day

CI:  Class  Imbalance,  CO:  Class  Overlap,  LG:  Low  Generalisation,  ON:  Outliers  and  Noise,    LC:  Learning  Complexity,  SP:  Stochasticity  

Page 36: Ahmad Haj Mosa Phd Defence Final

The  two-­‐systems  model  of  cognitive  processesALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 36

• The  decision  making  process  of  the  human  mind  uses  two  different  systems    

• These  two  systems  are  the  following  Kahneman[2011]:  

๏  Cogni\ve  System  1:  is  a  fast,  intuigve,  unconscious  and  emogon-­‐based  decision-­‐making  

๏  Cogni\ve  System  2:  is  a  slow,  conscious  and  calculagon-­‐based  decision-­‐making  system  

•We  mimic  the  two-­‐systems  of  human  psychological  system  and  design  the  Online  Self  Adapgve  Cellular  Neural  Network  (OSA-­‐CNN)  

•OSA-­‐CNN  has  two  interconnected  sub-­‐systems:  

๏  System  1:  is  the  process  model  (Intuigve-­‐System)    

๏  System  2:  is  the  controller  model  (Controller-­‐System)

5. MRNNAC

Controller System Intuitive

System

Real Historical Values

Predicted Values

Time Delay

-

Recent Prediction

Error

Control Action

Figure 5.1: The OSA-CNN Framework. The Intuitive-System takes the historical valuesto predict the future value of a time series. The Controller-System reads and compares thehistorical values with the corresponding prediction values and manipulate the Intuitive-System output to improve the future performance

– The current and delayed plant input, along with the delayed output, are the

inputs to this network.

– A training set containing plant input-output measurements is used to train this

network.

• Controller Network:

– It is used to drive the process plant to a target set-point following a reference

model, which models a particular trajectory that the plant output should follow

to converge to the targeted set-point.

– The target set-points input (the reference value that the plant output should

follow), along with the delayed output and inputs of the plant, are considered

to be inputs to this network.

– Once the process model network is trained, the controller network is trained by

connecting it with the process model network. Then, a time-series of a variant

set-point value is valued with its corresponding reference model to train the

controller. In this training phase, only the controller network weights need to

be learned while the process network weights are fixed from the first training

phase (training of the proceed network).

55

Page 37: Ahmad Haj Mosa Phd Defence Final

Online  Self  Adaptive  Cellular  Neural  NetworkALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 37

C-CNN

I-CNN

++

-

PSO

I-LR

C-LR

Online Operating ModeOffline Training Mode

+Linear

+

++Linear

+Linear

∫Satlins

-1

+

+

∫Satlins

-1

+

+

C-LR model I-LR model

C-CNN cell state model I-CNN cell state model

Page 38: Ahmad Haj Mosa Phd Defence Final

Outline

• Background  and  Motivation  

• General  Objectives    

• State-­‐of-­‐the-­‐art  

• CNN  Framework  1:  Soft  Radial  Basis  CNN  (SRB-­‐CNN)  

• Case  study  1:  Truck  detection  using  a  single  presence  detector  

• CNN  Framework  2:  Support  Vector  Machine  SRB-­‐CNN  (SVM-­‐SRB-­‐CNN)  

• Case  study  2:  Rain  drops  detection    

• CNN  Framework  3:  Online  Self  Adaptive  CNN  (OSA-­‐CNN)  

• Case  study  3:  Traffic  flow  time  series  forecast    

• Case  study  4:  Business  time  series  forecast    

• Quality  and  significance  of  results

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 38

Page 39: Ahmad Haj Mosa Phd Defence Final

Case  study  3:  Traffic  Flow  Prediction  ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 39

Description:  •Dataset  used  for  benchmarking  by  Caltrans  Performance  Measurement  System  (PeMS)  —online  available  benchmark  

•This  database  contains  traffic  flow  data  measured  every  30  seconds  from  about  15000  traffic  detectors  

•The  goal  is  to  predict  the  next  traffic  flow  measurement  based  on  different  gme  intervals

State-­‐of-­‐the-­‐art  methods:  

•Auto  Regressive  Moving  Average  

Model  (ARMA)  Fuller  [2009]    

•SVM  Regression  Härdle  [2012]  

•Bayesian  Network  Darwiche  

[2009]    

•Radial  Basis  Neural  Network  Yang  

et  al.  [2010]  

MRE  for  3  min  Time  Interval11,33%11,3%11,29%11,23%

7,15%5,34%

OSA-­‐CNN I-­‐CNN ARIMA Radial  Basis  ANN SVM  regression Bayesian  Network

MRE  for  5  min  Time  Interval

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1 9,05%9,15%9,07%9,01%8,83%

4,83%

MRE:  Mean  Relative  Error

Page 40: Ahmad Haj Mosa Phd Defence Final

Case  study  3:  Traffic  Flow  Prediction  ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 40

MRE  for  10  min  Time  Interval

0

0,014

0,028

0,042

0,056

0,076,9%6,94%6,98%6,97%

5,4%

3,52%

OSA-­‐CNN I-­‐CNN ARIMA Radial  Basis  ANN SVM  regression Bayesian  Network

MRE  for  15  min  Time  Interval

0

0,014

0,028

0,042

0,056

0,07 5,9%5,96%5,97%6,12%5,46%4,6%

OSA-­‐CNN  vs  I-­‐CNN  (one  step  predic\on)

MRE

0%

2,25%

4,5%

6,75%

9%

3-­‐min 5-­‐min 10-­‐min 15-­‐min 30-­‐min 60-­‐min

3,8%3,95%4,6%

3,52%4,83%5,3% 5,51%5,01%5,46%5,4%

8,83%

7,15%

I-­‐CNN OSA-­‐CNN

The  Mul\-­‐Steps  Predic\on  Performance  OSA-­‐CNN

0%

1,75%

3,5%

5,25%

7%

2 3 4 5 6

3-­‐min 5-­‐min 10-­‐min 15-­‐min 60-­‐minAggregation  Level

Number  of  steps

Page 41: Ahmad Haj Mosa Phd Defence Final

Outline

• Background  and  Motivation  

• General  Objectives  

• State-­‐of-­‐the-­‐art  

• CNN  Framework  1:  Soft  Radial  Basis  CNN  (SRB-­‐CNN)  

• Case  study  1:  Truck  detection  using  a  single  presence  detector  

• CNN  Framework  2:  Support  Vector  Machine  SRB-­‐CNN  (SVM-­‐SRB-­‐CNN)  

• Case  study  2:  Rain  drops  detection    

• CNN  Framework  3:  Online  Self  Adaptive  CNN  (OSA-­‐CNN)  

• Case  study  3:  Traffic  flow  time  series  forecast    

• Case  study  4:  Business  time  series  forecast    

• Quality  and  significance  of  results

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 41

Page 42: Ahmad Haj Mosa Phd Defence Final

Case  study  4:  NN3  Business  time  series    competition

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 42

Description:  •It  consists  of  111  \me  series  with  a  one-­‐month  gme  interval.  Represents  different  pracgcal  business  case  studies  .  

•  The  objecgve  of  this  compeggon  (NN3)  is  making  a  mulg-­‐step  predicgon  of  the  next  18  observa\ons  (18  month)  

•A  variety  of  researchers  invesggated  their  proposed  method  using  NN3

Kamel  (Gaussian  Process)Dyakonov  (KNN)

Chen  (ERT)Flores  (Genegc  Algorithem)

Yan  (GRANN)Illies  (ESN)

I-­‐CNNRahman  (LENN)

OSA-­‐CNN 13,18%14,56%

14,95%15,18%

15,8%

16,13%

16,55%

16,57%

16,92%

SMAPE  performance  over  NN3  time  series

State-­‐of-­‐the-­‐art  methods:  

• Layered  Ensemble  of  multi-­‐layers  

Neural  Networks  (LENN)  Rahman  

[2016]    

• Gaussian  Process  Kamel  [2007]  

• K  Nearest  Neighbours  (KNN)  

Dyakonov  [2007]  

• Ensemble  Regression  Tree  (ERT)  Chen  

[2007]  

• Automated  Linear  Model  with  Self  

Adaptive  Genetic  Algorithm  Flores  

[2007]  

• Generalised  Regression  Neural  

Network  (GRANN)  YAN  [2012]    

• Echo  State  Network  (ESN)  Ilies  [2007]  

SMAPE:  Symmetric  Mean  Absolute  Percentage  Error

Page 43: Ahmad Haj Mosa Phd Defence Final

—Target  —OSA-­‐CNN  

Case  study  4:  NN3  Business  time  series    competition

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 43

Page 44: Ahmad Haj Mosa Phd Defence Final

Case  study  3  &  4:  Concluding  RemarksALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 44

• Highlights:  ๏  A  novel  CNN  based  architecture  is  developed  (OSA-­‐CNN)  ๏  Time  series  forecast  framework  based  on  OSA-­‐CNN  is  designed  while  addressing  the  six  challenges  ๏  OSA-­‐CNN  clearly  outperforms  the  benchmark  from  the  state-­‐of-­‐the-­‐art  methods  (NN3  competition)

• OSA-­‐CNN  Framework  3  vs  Forecast  Challenges:  ๏  RICA  whitening  (ON)  ๏  OSA-­‐CNN  (LC,  LG)  ๏  OSA-­‐CNN  based  on  ESN  (LC,  CO,  LG)  ๏  Oscillation  behaviour  of  CNN  (CO,  LG,  SP)

Case  study  3  has  been  submitted  in  a  paper  for  the  journal  of  IEEE  Transactions  on  Neural  Networks  and  Learning  Systems  (under  review  since  May  2016)  (Class  A+)

Page 45: Ahmad Haj Mosa Phd Defence Final

Outline

• Background  and  Motivation  

• General  Objectives    

• State-­‐of-­‐the-­‐art  

• CNN  Framework  1:  Soft  Radial  Basis  CNN  (SRB-­‐CNN)  

• Case  study  1:  Truck  detection  using  a  single  presence  detector  

• CNN  Framework  2:  Support  Vector  Machine  SRB-­‐CNN  (SVM-­‐SRB-­‐CNN)  

• Case  study  2:  Rain  drops  detection    

• CNN  Framework  3:  Online  Self  Adaptive  CNN  (OSA-­‐CNN)  

• Case  study  3:  Traffic  flow  time  series  forecast    

• Case  study  4:  Business  time  series  forecast    

• Quality  and  significance  of  results

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 45

Page 46: Ahmad Haj Mosa Phd Defence Final

Quality  and  significance  of  the  resultsALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 46

Case  Study Challenge Framework  RICA  

whitening  (ON)

The  novel  multilayers  CNN  (CI,  CO,  LG)

RBF  (CO,  LG,  SP)

K-­‐means  (CO,  LG)

Support  Vectors  (CO,  LG,  LC)

PSO(LC,  CI) ESN(LC)

Two-­‐Systems  (LC,  LG)

Limitations

Truck  Detection

CI,CO,ON  LC,LG,SP SRB-­‐CNN ° ° ° ° ° Not  self  

adaptive  

Rain  Drops  Detection

CI,CO,ON  LC,LG SVM-­‐CNN ° ° ° ° °

Not  self  adaptive    +  Just  for  

classification

Traffic  Flow  Forecast

CO,ON  LC,LG,SP OSA-­‐CNN ° ° ° ° ° Just  for  

Forecast

Business  Time  Series  Forecast

CO,ON  LC,LG,SP OSA-­‐CNN ° ° ° ° ° Just  for  

Forecast

CI:  Class  Imbalance,  CO:  Class  Overlap,  LG:  Low  Generalisation,  ON:  Outliers  and  Noise,    LC:  Learning  Complexity,  SP:  Stochasticity  

Page 47: Ahmad Haj Mosa Phd Defence Final

Dissemination  and  publication  of  the  results:  Patents  and  Journal  Papers

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 47

Publication  Type Submitted  at   Process

Case  Study Title

Patent EU  Patent Granted 1Quality  determination  in  data  acquisition  Patent  No.  EP2790165

Patent German  Patent Submitted 3Steuervorrichtung  und  Steuerverfahren  für  eine  Verkehrssteuer-­‐

Anlage,  und  Steuersystem  

Journal    (Class  A)

Journal  of  Real-­‐time  Image  Processing     Published 2

Real-­‐Time  Raindrop  Detection  based  on  Cellular  Neural  Networks  for  ADAS  

Journal  (Class  A+)

Transportation  Research  Part  C   Minor  revision 1

Soft  Radial  Basis  Cellular  Neural  Network  (SRB-­‐CNN)  based  Robust  Low-­‐Cost  Truck  Detection  using  a  Single  Presence  

Detection  Sensor  

Journal    (Class  A+)

IEEE  Transactions  on  Neural  Network  and  Learning    systems  

Under  review  since  5  months

3Online  Self-­‐Adaptive  Cellular  Neural  Network  Architecture  for  

Robust  Time-­‐Series  Forecast  

Page 48: Ahmad Haj Mosa Phd Defence Final

Dissemination  and  publication  of  the  results:    Conference  Papers  and  book  chapters

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 48

• Fadi   Al  Machot,   Ahmad  Haj  Mosa,   Kusai   Dabbour,   Alireza   Fasih,   Christoph   Scharzmuller,  Mouhannad   Ali,   Kyandoghere   Kyamakya,   A   novel   real-­‐gme   emogon   detecgon  system  from  audio  streams  based  on  bayesian  quadragc  discriminate  classifier  for  ADAS,”  Nonlinear  Dynamics  and  Synchronizagon  (INDS)  2016,  Pages  1:5  

• Fadi  Al  Machot,  Ahmad  Haj  Mosa,  Alireza  Fasih,  Christopher  Schwarzlmu  l̈ler,  Mouhanndad  Ali  and  Kyandoghere  Kyamakya,  “A  Novel  Real-­‐Time  Emogon  Detecgon  System  for  Advanced  Driver  Assistance  Systems,”  Unger  H.,  Kyamakya  K.,  Kacprzyk  (Eds.)  J.  (Hrsg.):  Autonomous  Systems:  Developments  and  Trends,  Springer  Verlag  GmbH,  Berlin,  Heidelberg,  New  York  2011,  Pages  267  -­‐  276.  

• Ahmad  Haj  Mosa,   Fadi  Al  Machot,  Alireza   Fasih,   Fidaa  Al  Machot,   Kyandoghere  Kyamakya,   “Origin  Desgnagon  Esgmator  Based  on  Hidden  Markov  Models   for  Adapgve  Traffic  Control,”  IFAC  Proceedings  Volumes,  Volume  45,  Issue  4,  2012,  Pages  92-­‐96.  

• Ahmad  Haj  Mosa,  Kyandoghere  Kyamakya,  Mouhannad  Ali,  Fadi  Al  Machot,  Jean  Chamberlain  Chedjou,  “Neurocompugng-­‐based  Matrix  Inversion  Involving  Cellular  Neural  Networks:  Black-­‐box  Training  Concept”,  Autonomous  Systems  2015,  Volume  842,  Pages  119  -­‐  132.  

• Mouhannad  Ali,  Ahmad  Haj  Mosa,   Fadi  Al  Machot,  Kyandoghere  Kyamakya,   “A  Novel  Real-­‐Time  EEG-­‐Based  Emogon  Recognigon  System   for  Advanced  Driver  Assistance  Systems  (ADAS),”    Proceedings  of  the  INDS  2015,  Pages  9  -­‐  13.  

• Ahmad   Haj   Mosa,   Mouhannad   Ali,   Fadi   Al   Machot,   Kyandoghere   Kyamakya,   “A   Computerized  Method   to   Diagnose   Strabismus,”   Proceedings   of   the   7th   GI  Workshop  Autonomous  Systems  2014,  Volume  835,  Pages  209  -­‐  220.  

• Mouhannad   Ali,   Fadi   Al   Machot,   Ahmad   Haj   Mosa,   Patrik   Grausberg,   Nkiediel   Alain   Akwir,   Baraka   Olivier   Mushage,   Kyandoghere   Kyamakya,   “A   Review   of   Object  Classificagon  for  Video  Surveillance  Systems,”  Proceedings  of  the  7th  GI  Workshop  Autonomous  Systems  2014,  Volume  835,  Pages  197  -­‐  208.  

• Ahmad   Haj   Mosa,   Mouhannad   Ali,   Kyandoghere   Kyamakya,   “A   Computerized   Method   to   Diagnose   Strabismus   based   on   A   Novel   Method   for   Pupil   Segmentagon”,  Proceedings   of   the   Internagonal   Symposium  on   Theoregcal   Electrical   Engineering   (ISTET   2013),   University   of  West   Bohemia   in   Pilsen,   Faculty   of   Electrical   Engineering,  Pilsen,  Juni  2013,  S.  2.  

• Ahmad   Haj   Mosa,   Jean   Chamberlain   Chedjou,   Mouhannad   Ali,   Kyandoghere   Kyamakya,   “Input   Variant   Pargcle   Swarm   Opgmizagon   for   Solving   Ordinary   and   Pargal  Differengal  Equagons  with  Constraints”,  Proceedings  of  the  Internagonal  Symposium  on  Theoregcal  Electrical  Engineering  (ISTET  2013),  Pages  2.  

• Ahmad   Haj   Mosa,   Mouhannad   Ali,   Jean   Chamberlain   Chedjou,   Kyandoghere   Kyamakya,   “OD   Matrix   Esgmagon   of   a   Complex   Juncgon   based   on   Pargcle   Swarm  Opgmizagon,"  Proceedings  of   the  13th   Internagonal  Conference  on   Innovagve   Internet  Community  Systems  and  the   Internagonal  Workshop  on  Autonomeaous  Systems  2013,  Volume  826,  Pages  282  -­‐  288.

Page 49: Ahmad Haj Mosa Phd Defence Final

Thank  you  for  your  attention  !!  

Q  &  A  

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT| WIEN GRAZ

Ahmad  Haj  Mosa 04/10/2016 49