¾‍粉œ«ç¹‍°„解‍œç¥ç‰©¹‹™¶é«”絧‹ab...

Download ¾‍粉œ«ç¹‍°„解‍œç¥ç‰©¹‹™¶é«”絧‹Ab initio Crystal Structure

Post on 06-Feb-2017

236 views

Category:

Documents

0 download

Embed Size (px)

TRANSCRIPT

  • b initio Crystal Structure Determination from Powder Diffraction Data

    1987

    (Reciprocal space method) (Direct space method)

    Abstract

    The ab initio crystal structure determination from powder diffraction data (SDPD) is remaining a challenge problem. Before 1987 SDPD is very difficult and only few examples successful. In addition to high demanding from material researchers, methodology and computer development make this work become very active. Now a day near 1000 powder samples prior unknown structure were solved by reciprocal space method and direct space method. The reciprocal method is more or less following single crystal structure determination processes, while the direct space method using different strategy. Direct space method constructs molecule structure into crystal unit cell and calculates its powder pattern. The main themes of direct space methods are using different computational methods to get calculate patterns and compare with experimental data and minimized its difference. These methods need extensive calculation and prior chemical information to arrange molecular structure. Many mathematic algorithms such as Monte Carlo, simulated annealing, genetic algorithm, topological method, and energy minimization work quite successfully. In this article I will review the processes of SDPD and the principle of direct space method. Keywords: Structure Determination, Powder Diffraction, Reciprocal space method, Direct space

    method.

  • 1

    X

    1895 X 19871987 50 100(1, 2)(3, 4)

    (5-9)

    2

    (Random Orientation)

    (dhkl) (2)n 1

    2 dhkl sin = n

    (prefer orientation)

    2 (Bragg Reflection)

  • (refinement) Rietveld Method(10-15)Rietveld Method H. Rietveld 1969(16)

    1980David Cox (17) Rietveld Method GSAS(18)FullProf(19)DBW(20)Rietan(21) Rietveld Method(22)

    3

    (Reciprocal space Method) (Direct Space Method) (2)(Direct method)(Patterson method) Zachariasen 1948 1963 (23) J. P. Attfield (1986) (24)Attfield 68 -CrPO4 (Orthorhombic) 8 60 (25)(3, 4)

    ()

    (index)Rietveld method

    3.1

    (sample) (specimen)

    X X

    Bragg-Brentano /2 Debye-Scherrer camera

  • X

    5

    1 20 10

    Scherrer (26, 27) X

    (28, 29) 10 nm 10 3 nm 2 nm X

    3.2

    X X X

    (30) 5-10 X

    1/ X X (amorphous) X 15-30 keV 50-60 keV

  • X(31) 28 keV (0.4428) X (imaging plate) 10 2 75 d-spacing 0.3637

    3.3

    Bragg-Brentano Debye-Scherrer camera (continue scan) (step scan) Rietveld Method 0.01 0.02 (Imaging plate)CCD pixel

    (absorption edge) (Anomalous scattering) (30)

    3.4

    0.02

    (Miller Index) (Indexing)

    ICDD-JCPDS Treor90,(32) Ito,(33) Dicvol91(34)

    JCPDS

    (Genetic Algorithm)

  • 3.5

    Ihkl = Fhkl2 LP IFLP

    Pawley 1981 Pawley Method (35) Le Bail Le Bail Method (1988) (36)

    4

    (Intensity) (Structure Factor) (Patterson Method) (36-39)

    Pawley Le Bail

    Rietveld Refinement Pawley Le Bail RB

    5

    NMRIRUV-vis

  • 5.1 Global Optimization Method

    Global Optimization Method

    tetracaine hydrochloride (37) DASH

    () (Rigid Body) (x, y, z) (Rx, Ry, Rz) (SP3) (SP2) (SP)

    torsion angle torsion angle ()

    Monte Carlo, (38) Simulated Annealing, (39, 40) Genetic Algorithm(41)Monte Carlo Genetic Algorithm

    Endeavour(42)PowderSolve(43)DASH (44) Attfield DASH tetracaine hydrochloride triclinic, P1, a = 7.4002(1), b = 8.5669(1), c = 13.6923(3) , = 106.211(1), = 90.853(1) = 98.778(1)

    Global minimization method (asymmetric unit)

    Harris(45) Genetic Algorithm monoclinic (a = 27.12 , b = 10.05, c = 20.32 , = 117.3 ) C 2/c Peter W. Stephens (46) Simulated Annealing N-( p-Tolyl)-dodecylsulfonamide Dicvol a = 38.773 , b = 5.507 , c = 9.509 , = 86.35 Pawley method P 21/ c simulated annealing method Rietveld method

  • 5.2 Topological method

    Topological method(47)FOCUS

    FOCUS McCusker VPI-9(48), (NH4+)24 [Si48 Zn12 O120] . 24H2O P41212 a = 9.8837(1), c = 73.6505(6) , 1707 T VPI-9 Zn Rb Zn Rb (Anomalous Scattering) NSLS ESRF McCusker FOCUS VPI-10 ( (NH4+) [ Zn8 O72] . 28 H2O ) B2 ( K4 Na4 [Si16 Be4 O40] . 16 H2O ) (structure envelope method)(Maximun Entropy

    Method) (Energy minimization Method)McCusker Baerlocher(49, 50)

    (envelope) Rietveld

    (51, 52)

    6

    (1)

    (2) (3) Rietveld Method (4)

  • (1) Le Bail, A. Trends in structure determinations by powder diffractometry, Advances in Structure Analysis, Edited by R. Kuzel and J. Hasek, published by the Czech and Slovak Crystallographic Association, 2001, 166-189.

    (2) David, W. I.; Shankland, F. K.; McCusker, L. M.; and Baerlocher, Ch. Edited, Structure determination from powder diffraction data, International Union of Crystallography Monographs on Crystallography No. 13. Oxford: IUCr/Oxford University Press, 2002.

    (3) Von Dreele, R. B.; Stephens, P. W.; Smith, G. D.; and Blessing, R. H. Acta Cryst. 2000, D56, 1549-1553.

    (4) Von Dreele, R. B. Acta Cryst. 2001, D57, 1836-1842. (5) Kamiyama, T. Journal-of-the-Crystallographic-Society-of-Japan. 2002, 44(3): 168-75. (6) Harris, K.D.M. Current Opinion in Solid State and Materials Science 2002, 6, 125-130. (7) Neumann, M. A.; Leusen, F. J. J.; Engel, G. E.; Wilke, S.; and Conesa-Moratilla, C. Int J Mod

    Phys B; 2002, 16:40714. (8) Harris, K. D. M.; Kariuki, B. M.; and Johnston, R. L. Solving crystal structures from powder

    diffraction data in direct space - Progress in the application of genetic algorithms, Advances in Structure Analysis, Edited by R. Kuzel and J. Hasek, published by the Czech and Slovak Crystallographic Association 2001, 190-204.

    (9) McCusker, L. B. Acta Cryst. 2000, A56, s11. (10) Young, R. A. Editor. The Rietveld Method. Oxford University press. 1993. (11) Toraya, H. J. Appl. Crystallogr. 2000, 33, 1324-1328. (12) Dupont, O.; Jonas A. M.; and Legras, R. J. Appl. Crystallogr. 1997, 30, 921-931. (13) Madsen, I. C.; Scarlett, N. V. Y.; Cranswick, L. M. D.; and Lwin, T. J. Appl. Crystallogr. 2001,

    34, 409-426.

    (14) Hill, R. J.;and Cranswick, L. M. D. J. Appl. Crystallogr. 1994, 27, 802-844.

    (15) Chiang, Long Y.; Upasani, R. B.; Sheu, Hwo-Shuenn; Goshorn, D. P.; and Lee, C. H. J. Chem. Soc. Chem. Comm., 1992, 959-961.

    (16) Rietveld, H. M. J. Appl. Crystallogr., 1969, 2, 65.

    (17) Cox, D. E.; Hastings, J. B.; Thomlinson, W.; and Prewitt, C. T. Nucl. Instrum. Methods, 1983, 208, 573-578.

    (18) Larson, A. C.; and von Dreele, R. B. Generalized Structure Analysis System, 1986. Los Alamos National Laboratory, Los Alamos, NM.

    (19) Rodriguez-Carvajal, J. "FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis", Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, p. 127, Toulouse, France 1990.

    (20) Wiles, D. B.; And Young, R. A. J. Appl. Crvst. 1981, 14, 149-151.

  • (21) Izumi, F.; and Ikeda, T. Mater. Sci. Forum, 2000, 321-324, 198-204.; Izumi, F. RIETAN Software, Version 1.07. National Institute for Materials Science, Japan. 2002.

    (22) McCusker, L. B.; Von Dreele, R. B.; Cox, D. E.; Louer, D.; and Scardi, P. J. Appl. Cryst allogr., 1999, 32, 36-50.

    (23) (a) Zachariasen, W. H. Acta Crystallogr., 1948, 1, 265-8, 277-87. (b) Zachariasen, W. H.; and Ellinger, F. H. Acta Crystallogr., 1963, 16, 369-75.

    (24) Attfield, J. P.; Sleight A. W.; and Cheetham, A. K. Nature, 1986, 322, 620.

    (25) Morris, R. E.; Owen, J. J.; Stalick, J. K.; and Cheetham, A. K. J. Solid State Chem., 1994, 111, 52-7.

    (26) Scherrer, Nachr. Ges. Wiss. Gottingen, 1918, 26 September, 98-100.

    (27) Snyder, R. L.; Fiala, J.; and Bunge, H. J. Editors. Defect and Microstructure Analysis by Diffraction. Oxford University Press. 1999.

    (28) Langford, J. I.; Lour, D.; and Scardi, P. J. Appl. Crystallogr. 2000, 33, 964-974.

    (29) Scardi, P.; and Leoni, M. Acta Cryst. 2002, A58, 190-200.

    (30) Warner, J. K.; Cheetham, A. K.; and Cox, D. E. J. Appl. Crystallogr. 1995, 28, 494-502.

    (31) (a) Harding, M. M. Acta Cryst. 1995, B51, 432-446. (b) Tschentscher, Th.; and Suortti, P. J. Synchrotron Rad. 1998, 5, 286-292.

    (32) Werner, P. E.; Eriksson, L.; and Westdahl, M. J. Appl. Crystallogr., 1985, 18, 108-13. (33) Visser, J. W. J. Appl. Crystallogr. 1969 2, 89-95.

    (34) Boultif, A.; and Louer, D. J. Appl. Crystallogr. 1991, 24, 987-93.

    (35) Pawley, G. S. J. of Applied Cryst., 1981, 14, 357-361.

    (36) Le Bail, A.; Duroy, H,; Fourquet, J. L. Materials Research Bulletin, 1988, 23, (3), 447-452.

    (37) Nowell, Harriott.; Attfield, J. Paul; Cole, Jason C.; Cox, Philip J.; Shankland, Kenneth.; Maginn, Stephen J.; andSam Motherwell. W. D. New J. Chem., 2002, 26, 469-472.

    (38) K. D. M. Harris, M. Tremayne, P. Lightfoot, and P. G. Bruce, J. Am. Chem. Soc., 1994, 116, 3543-3541.

    (39) Deem, M. W.; Newsam, J. M. Nature, 1989, 342, 260 ().

    (40) Deem, M. W.; and Newsam, J. M. J. Am. Chem. Soc. 1992, 114, 7189-7198.

    (41) (a) Harris, K. D. M.; Johnston R. L.; and Kariuki, B. M.; Acta Cryst. 1998, A54, 632-645.(b) Shankland, K.; David, W. I. F.; and Csoka, T. Z. Kristallogr., 1997, 212, 550-552. (c) Kariuki, B. M.; Serrano, G.; Johnston, R. L.; and Harris, K. D. M. Chem. Phys. Lett., 1997, 280,

  • 189-95.

    (42) Putz, H.; J. Schon, C.; and Jansen, M. J. Appl. Crystallogr. 1999, 32, 864-870.

    (43) Engel, G. E.; Wilke, S.; Konig, O.; Harris, K. D. M.; Leusen, F. J. J. J. Appl. Crystallogr. 1999, 32, 1169.

    (44) David, W. I. F.; Shankland, K.; and Shankland, N. Chem

Recommended

View more >