a mitochondria odyssey

Upload: mayra-zi-chi

Post on 06-Jul-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 A Mitochondria Odyssey

    1/13

    Review 

    2016: 

     A   ‘Mitochondria

    Odyssey Catherine Cherry,1,2 Brian Thompson,1,2 Neil Saptarshi,1,2

    Jianyu Wu,1 and Josephine Hoh1,*

    The  integration  of   the  many   roles   of   mitochondria   in  cellular   function and  the

    contributionof   mitochondrial   dysfunction  to   disease  are  major areas  of   research.

    Within this  realm,   the  roles  of   mitochondria   in  immune defense,  epigenetics, and

    stem cell 

    (SC) 

    development 

    have 

    recently  

    come 

    into 

    the 

    spotlight. 

    With 

    new

    understanding, mitochondria 

    may  

    bring 

    together  

    these 

    seemingly  

    unrelated

    elds, a  crucial  process in  treatment  and  prevention  for   various  diseases.  In  this

    review we  describe  novel  ndings  in  these  three arenas,  discussing  the  signi-

    cance of   the  interplay   between  mitochondria   and  the  cell  nucleus  in  response  to

    environmental  cues.  While  we  optimistically   anticipate  that  further   research  in

    these areas  can  have  a  profound impact  on  disease  management,  we  also  bring

    forth some 

    of  

    the 

    key  

    questions 

    and 

    challenges 

    that 

    remain.

    ‘Thus Spoke  Mitochondria’Mitochondria

     

    are 

    cellular 

    organelles 

    with 

    important 

    roles 

    in 

    signaling 

    and 

    bioenergetics. 

     They 

    are

    surrounded 

    by 

    two 

    membranes, 

    the 

    inner 

    mitochondrial 

    membrane 

    (IMM) 

    and 

    the 

    outer

    mitochondrial 

    membrane 

    (OMM). 

    In 

    most 

    cell 

    types, 

    mitochondria 

    are 

    not 

    isolated 

    organelles;

    they 

    radiate 

    from 

    the 

    cell 

    nucleus 

    in 

    reticular 

    network, 

    displaying 

    high 

    levels 

    of  

    interconnectivity

    and 

    plasticity 

    facilitating 

    their 

    functional 

    roles 

    within 

    the 

    cell 

    [1].

     The 

    eld 

    of  

    biology 

    has 

    come 

    long 

    way 

    in 

    understanding 

    mitochondria 

    since 

    their 

    discovery

    over  a  century  ago   [2].  In  2015,  the  UK   made  changes  to  legislation  allowing  the  use  of 

    mitochondrial 

    replacement 

    therapies 

    to 

    help 

    prevent 

    the 

    development 

    of  

    mitochondrial 

    diseases

    [3]. 

    Despite 

    rapid 

    progress 

    in 

    mitochondrial 

    biology, 

    little 

    emphasis 

    has 

    been 

    placed 

    on

    mitochondrial  involvement  in  epigenetics,  SC  biology,  or  immune  defense.   These  three  areas

    are 

    intricately 

    linked 

    by 

    the 

    functional 

    roles 

    of  

    mitochondria. 

    Consequently, 

    by 

    appreciating 

    this

    link   we  may  also  improve  our  understanding  of   the  environmental  signals  that  control  gene

    function 

    and 

    inuence 

    mitochondrial 

    dysfunction 

    and 

    disease.

     This 

    review 

    aims 

    to 

    tie 

    together 

    the 

    recent 

    steps 

    forward 

    in 

    these 

    three 

    underrepresented 

    elds

    of  

    mitochondrial 

    biology. 

    In 

    addition, 

    to 

    facilitate 

    the 

    development 

    of  

    strategic 

    approaches 

    toanswer  complex  questions  in  these  elds,  we  discuss  rapidly  evolving  technologies  and

    experimental 

    tools 

    to 

    study 

    mitochondria 

    in 

    great 

    detail. 

    Of  

    clinical 

    relevance, 

    we 

    provide

    examples  of   treatments  using  mitochondria  that  are  either  licensed  or  currently  in  development

    aiming 

    to 

    treat 

    various 

    pathologies.

    Immunity,  SC  Biology,  and  Epigenetics

    Mitochondria 

    in 

    Immunity

    Mitochondria 

    play 

    signicant 

    role 

    in 

    the 

    human 

    immune 

    system. 

    Pattern 

    recognition 

    receptors

    (PRRs) 

    recognize 

    pathogen-associated 

    molecular 

    pathogens 

    (PAMPs) 

    and 

    activate 

    signaling

    cascades 

    that 

    promote 

    inammatory 

    responses 

    [4]. 

    On 

    viral 

    infection, 

    these 

    inammatory

     Trends

    Mitochondria play a pivotal role in the

    immune system by detecting foreign

    invaders through signaling pathways

    (e.g., inammasomes) and generating

    immune responses. Modulation of thisrole  might open up new therapeutic

    potential.

    Methylat ion by DNA methyltrans-

    ferases contributes to the epigenetic

    modicat ion of mitochondrial DNA.

    Dysregulation of the mitochondrial epi-

    genome within cel ls has been impli-

    cated in various diseases.

    Mi tochondria contr ibute to t issue

    regeneration and integrity, which are

    maintained by stem cell renewal and

    differentiation.Stemcellspresent excit-

    ing  medical possibilities in regenerative

    medicine.Understanding specic 

    mito-chondrial biology in stem cells is vital.

    Novel techniques are al lowing the

    study of mitochondria in much greater

    detail than before.

    Possible new therapeutic avenues are

    emerging with increased scientic

    knowledge l inking mitochondria to

    immunity, epigenetics, and stem cell

    biology.

    1School of Medicine, Departments of 

    Environmental Health Science and

    Ophthalmology, Yale University, New

    Haven, CT, USA 2These authors contributed equally.

    *Correspondence:

    [email protected] (J. Hoh).

    Trendsin MolecularMedicine, May2016,Vol. 22,No. 5 http://dx.doi.org/10.1016/j.molmed.2016.03.009 391© 2016 Publishedby Elsevier Ltd.

    mailto:[email protected]://dx.doi.org/10.1016/j.molmed.2016.03.009http://dx.doi.org/10.1016/j.molmed.2016.03.009http://crossmark.crossref.org/dialog/?doi=10.1016/j.molmed.2016.03.009&domain=pdfmailto:[email protected]

  • 8/17/2019 A Mitochondria Odyssey

    2/13

    responses 

    are 

    triggered 

    and 

    virally 

    infected 

    cells 

    can 

    be 

    eliminated 

    by 

    mitochondria-driven

    apoptosis. 

    In 

    these 

    molecular 

    events, 

    protein-signaling 

    complexes 

    that 

    drive 

    the 

    production 

    of 

    interferons 

    (IFNs) 

    form 

    active 

    complexes 

    on 

    mitochondria 

    [5]. 

    When 

    present, 

    viral 

    RNA  

    forms 

    a

    complex 

    with 

    Rig-1-like 

    receptors 

    (see 

    Glossary ) 

    and 

    translocates 

    to 

    the 

    mitochondrialantiviral

     

    signaling 

    protein 

    (MAVS) 

    in 

    the 

    OMM. 

    MAVS 

    forms 

    aggregates 

    in 

    the 

    OMM 

    that 

    can

    subsequently 

    activate 

    the 

    key 

    signaling 

    mediators 

    IFN 

    regulatory 

    factor 

    (IRF3) 

    and 

    the

    transcription 

    factor 

    nuclear 

    factor 

    kappa 

    (NF-k B) 

    pathway 

    in 

    the 

    cytoplasm 

    (Figure 

    1 A) 

    [6].

    It  is  increasingly  recognized  that  mitochondrial  DNA   (mtDNA)  and  mitochondrial  reactive

    oxygen 

    species 

    (mtROS) 

    play 

    signicant 

    roles 

    in 

    the 

    cellular 

    immune 

    response. 

    mtDNA  

    released

    during  Bcl-2-mediated  apoptosis  can  bind  to  cGMP– AMP  synthase  (cGAS)  causing  the

    generation 

    of  

    cGAMP, 

    which 

    in 

    turn 

    activates 

    stimulator 

    of  

    IFN 

    genes 

    (STING). 

     This 

    results

    in 

    the 

    production 

    of  

    IFN 

    (Figure 

    1B) 

    [5]. 

    Caspase-3, 

    -9, 

    and 

    -7 

    of  

    the 

    apoptotic 

    caspase 

    cascade

    Glossary

     Acetyl-CoA: metabolic intermediate

    produced during fatty acid

    metabolism.

     Age-related macular

    degeneration (AMD): leading cause

    of vision loss in elderly populations. In

    the dry form, debris or ‘drusen’

    accumulates. In the wet form, blood

    vessels grow from the choroid.

    Diabetic retinopathy: complication

    of  

    diabetes affecting the eyes and

    leading to vision loss.

    Genome-scale analysis: analysis of 

    genomic features such as DNA 

    sequence and gene expression over

    the whole genome. The genome is

    searched for small variations called

    SNPs that occur more frequently in

    people with a particular disease.

    Heteroplasmy: the mix of non-

    mutated and mutated mtDNA that

    can exist in a cel l. The level of  

    heteroplasmy can differ between

    cells, tissues, and individuals.

    Mammosphere: a clump of human

    mammary gland cells.

    Mitochondrial DNA (mtDNA):

    circular genome inside nucleoids in

    the inner mitochondrial membrane

    that encodes for 13 proteins and 24

    RNA molecules.

    Mitochondrial ssion: the process

    of two mitochondria separating.

    Mitochondrial fusion:  joining of two

    more mitochondria to form a

    network.

     MT-RNR1:  the mitochondrial gene

    that encodes 12s RNA.

    Nucleoid architecture: pattern by

    which DNA is compacted, folded, or

    wrapped.

    Oxidative phosphorylation

    (OXPHOS): metabolic pathway in

    which mitochondria produce ATP.

    Rig-1-like receptor: a  PRR in the

    cytoplasm.

    Stemness: common molecular

    processes underlying the core SC

    properties of self-renewal and the

    generation of differentiated progeny.

    Superoxide: a compound containingthe anion O2

    .

    MAVS

    Viral RNA

    RIG1

    NF-κ BIRF3/7

    mtDNA

    CRIF1

    LEM

    ROS

    Acvaon of NLRP3 inflammasome

    Producon of

    IFNs and

    cytokines

    RAGE

    TLR9TFAM

    mtDNA

    (D)

    (A)

    (B)

    (C)

    pDC

    Mature IL-1β

    producon

    cGAS

    cGAMP

    STING

    ATP + GTP

    IRF3

    mtDNA

    Cell

    damage/necrosis

    Figure  1.  Mitochondria  and  the  Immune  System.  (A)ViralRNA formsa complex with RIG1 andbindsto mitochondrial

    antiviral signaling protein (MAVS) on the outer mitochondrial membrane (OMM). This then stimulates the nuclear factor

    kappa 

    B (NF-k B)   and interferon (IFN) regulatory factor 3/7 (IRF3/7) pathways resulting in the production of IFNs and

    cytokines.(B) Mitochondrial DNA (mtDNA) released from themitochondria is a stress signal andcan activate the stimulator

    of IFNgenes (STING) pathway. mtDNAbinds to cGMP– AMP synthase (cGAS) generating cGAMP, which activates STING.

    IRF3 can then induce expression of IFN and other IFN-stimulated genes (ISGs). (C) Transcriptional factor A, mitochondrial

    (TFAM) is a 

    mtDNA-binding protein. After cell damage/necrosis TFAM acts as a danger signal and enhances the

    plasmacytoid dendrit ic cell (pDC) response by binding to the receptor for advanced glycation end products (RAGE)

    and toll-like receptor 9 (TLR9). (D) CR6-interacting factor (CRIF1) generates reactive oxygen species (ROS) through an

    interaction with the lymphocyte expansion molecule (LEM). Mitochondrial ROS (mtROS) stimulate the immune system by

    activating the Nod-like receptor family, pyrin domain containing 3 (NLRP3) inammasome pathway, which generates

    downstream mature IL-1b.

    392  Trends in MolecularMedicine, May2016,Vol. 22,No. 5

  • 8/17/2019 A Mitochondria Odyssey

    3/13

    can 

    silence 

    immune 

    activation 

    [7,8], 

    which 

    may 

    prevent 

    dying 

    cells 

    from 

    producing 

    IFN. 

    Of  

    note,

    loss 

    of  

    the 

    caspase 

    cascade 

     in 

    vivo 

    and 

     in 

    vitro 

    leads 

    to 

    elevated 

    IFN-b levels. 

    With 

    the 

    goal 

    of 

    silencing 

    immune 

    activation, 

    caspase 

    inhibitors 

    have 

    been 

    included 

    in 

    animal 

    preclinical 

    trials

    yielding 

    promising 

    results. 

    For 

    example, 

     VX-765, 

    selective 

    inhibitor 

    of  

    caspase-1 

    [9,10], 

    iscurrently

     

    being 

    investigated. 

    However, 

    none 

    of  

    these 

    caspase 

    inhibitors 

    is 

    currently 

    licensed. 

    Of 

    note, 

    caspase 

    inhibition 

    can 

    amplify 

    IFN 

    production, 

    which 

    is 

    an 

    interesting 

    concept 

    from 

    a

    pharmacological 

    standpoint.

     The  Nod-like  receptor  family,  pyrin  domain  containing  3  (NLRP3)  inammasome   can  be

    activated 

    by 

    wide 

    range 

    of  

    ligands 

    including 

    bacterial 

    toxins 

    and 

    PAMPs 

    [11]. 

    NLRP3 

    enables

    the  activation  of   caspase-1   which  cleaves  IL-1b  into  its  mature  form.  Experiments  in  murine  bone

    marrow-derived 

    macrophages 

    (BMDMs) 

    showed 

    that 

    oxidized 

    mtDNA  

    released 

    into 

    the 

    cyto-

    plasm 

    could 

    bind 

    and 

    activate 

    the 

    NLRP3 

    inammasome 

    during 

    programmed 

    cell 

    death

    (Figure  1D)  [12]. Another  study  using  murine  BMDMs  reported  that  mtDNA   release   depended

    on 

    the 

    NLRP3 

    inammasome 

    and 

    mtROS 

    and 

    that 

    mtDNA  

    could 

    further 

    amplify 

    inammasome

    signaling  (caspase-1   activation)  [13].  Of   note,  the  autophagy  proteins  microtubule-associated

    protein-1  light  chain  3B  (LC3B)  and  Beclin-1  were  required  to  maintain  mitochondrial  integrity[13].  mtDNA   is  a  ligand  of   the  NLRP3  inammasome   and  this  system  provides  a   positive

    feedback  

    loop 

    to 

    prolong 

    the 

    activation 

    of  

    the 

    NLRP3 

    inammasome. 

    Notably, 

    dysregulation 

    of 

    the  NLRP3  inammasome   has  been  associated   with  many  diseases,  including   Alzheimer's

    disease  and   type   2  diabetes  [14].  Hence,  besides  immune  responses  and   inammation,  it   is

    conceivable 

    that 

    the 

    mechanisms 

    and 

    regulation 

    of  

    mtDNA  

    in 

    the 

    context 

    of  

    inammasome

    activation  could  be  applicable  to  many  other  diseases.

     The  mtDNA-binding  protein  transcriptional  factor   A,  mitochondrial  (TFAM)  regulates  nucleoid

    architecture,  abundance,  and  segregation  [15]. A    TFAM  heterozygous  (TFAM+/  )  knockout

    mouse  line  has  been  shown  to  display  40–60%   mtDNA   depletion  and   mild  mtDNA   repair

    defects, 

    which 

    can 

    cause 

    an 

    increase 

    in 

    mtDNA  

    mutations 

    [5]. 

    In 

     TFAM+/  mouse 

    embryonic

    broblasts 

    (MEFs), 

    mtDNA  

    stress 

    was 

    induced 

    with 

    lack  

    of  

     TFAM 

    and 

    in 

    the 

    absence 

    of  

    major

    oxidative  phosphorylation  (OXPHOS)   defects  [5].   This  resulted  in  decreased   total  mtDNA,

    creating 

    larger 

    nucleoids 

    and 

    instigating 

    mitochondrial 

    hyperfusion. 

    mtDNA  

    instability 

    and

    mitochondria  dysregulation  have  been  observed  in  many  human  diseases;  hence,  cells  isolated

    from 

    this 

    mouse 

    model 

    can 

    be 

    used 

    to 

    study 

    cellular 

    responses 

    to 

    mtDNA  

    stress 

     in 

    vitro.

    Specically,  challenging  TFAM+/  MEFs  with   herpes  simplex  virus  1  or  vesicular  stomatitis  virus

    demonstrated 

    that 

    the 

    mice 

    were 

    resistant 

    to 

    infection 

    compared 

    with 

    wild-type 

    (WT) 

    MEFs 

    [5].

    Depletion 

    of  

    mtDNA  

    in 

    WT  

    MEFs 

    however, 

    reduced 

    the 

    resistance 

    to 

    viral 

    infection, 

    suggesting

    that  virally  induced  mtDNA   stress  boosted  the  host's  antiviral  responses,  as  evidenced  by

    induced 

    type 

    IFN 

    and 

    IFN-stimulated 

    gene 

    (ISG) 

    responses 

    [5].

    Julian 

    and 

    colleagues 

    [16,17] 

    built 

    on 

    recent 

    evidence 

    suggesting 

    that 

    mtDNA  

    is 

    the 

    principal

    regulator 

    of  

    systemic 

    inammation 

    in 

    the 

    immune 

    response 

    [18]. 

     The 

    damage-associated

    molecular 

    pattern 

    (DAMP) 

    nuclear 

    DNA-binding 

    high-mobility 

    group 

    box 

    protein1 

    (HMGB1)can

     

    be 

    secreted 

    by 

    immune 

    cells 

    and 

    act 

    as 

    mediator 

    of  

    inammation 

    [19]. 

    HMGB1 

    has 

    been

    shown 

    to 

    engage 

    the 

    receptor 

    for 

    advanced 

    glycation 

    end 

    products 

    (RAGE), 

    which 

    in 

    turn

    induces 

    cytokine 

    secretion 

    through 

    activation 

    of  

    the 

    transcription 

    factor 

    NF-k B 

    and 

    enhance

    responses 

    to 

    CpG 

    DNA  

    in 

    murine 

    plasmacytoid 

    dendritic 

    cells 

    (pDCs) 

    [20]. 

    HMGB1 

    has 

    also

    been 

    shown 

    to 

    direct 

    cell 

    migration 

    of  

    murine 

    mesoangioblasts 

    (mesoderm 

    SCs) 

    in 

    NF-k B-

    dependent 

    manner 

    [21]. 

     TFAM 

    is 

    HMGB1 

    structural 

    homolog. 

    Consequently, 

    it 

    has 

    been

    postulated 

    that 

     TFAM 

    engages 

    the 

    RAGE 

    to 

    enhance 

    pDC 

    activation 

    via 

    toll-like 

    receptor 

    9

    (TLR9), 

    as 

    shown 

    in 

    Figure 

    1C 

    [16,20]. 

    pDCs 

    are 

    antigen-presenting 

    cells 

    that 

    promote 

    immune

    responses  to  self-antigens  and  to  self-DNA   released   from  necrotic  cells.  In  these  studies,

    exposure 

    to 

     TFAM 

    alone 

    did 

    not 

    activate 

    pDCs 

    but 

    did, 

    however, 

    amplify 

    type 

    IFN 

    and 

    tumor

    Trends inMolecularMedicine, May2016, Vol. 22, No. 5 393

  • 8/17/2019 A Mitochondria Odyssey

    4/13

    necrosis 

    factor 

    alpha 

    (TNF/ ) responses  to  CpG-DNA   in  cultured  splenocytes  [16,17].  Conse-

    quently, 

     TFAM-mediated 

    stimulation 

    of  

    pDCs 

    enhanced 

    their 

    cytokine 

    responses 

    to 

    CpG 

    DNA,

    suggesting 

    strong 

    link  

    between 

    mitochondria 

    and 

    immune 

    activation 

    stemming 

    from 

    necro-

    tized 

    cells. 

     These 

    ndings

     

    may 

    have 

    strong 

    implications 

    in 

    pathological 

    conditions 

    wherenecrotic

     

    or 

    apoptotic 

    cells 

    are 

    present 

    and 

    can 

    trigger 

    an 

    immune 

    response.

    From 

    another 

    angle, 

     T  

    lymphocyte 

    proliferation 

    can 

    increase 

    with 

    changes 

    in 

    metabolic 

    respira-

    tion 

    and 

    ROS 

    production, 

    which 

    are 

    critical 

    processes 

    in 

    mitochondrial 

    function 

    [22]. 

    Compared

    with   resting  T   cells,   activated  T   cells  have  a  different  metabolic  program  that  includes  the  ability  to

    adapt 

    to 

    changing 

    environments, 

    as 

    has 

    been 

    shown 

    in 

    numerous 

    studies. 

    For 

    instance, 

    one

    report  identied AMP-activated  protein  kinase  (AMPK)  as  a  metabolic  checkpoint  that  regulates

     T  

    cell 

    adaptation 

    and 

    maintains 

    cell 

    viability 

    [23]. 

    In 

    addition, 

    recently 

    identied mutation 

    in 

    the

    lymphocyte 

    expansion 

    molecule 

    (LEM) 

    has 

    been 

    shown 

    to 

    impact 

     T  

    cell 

    immunity 

    and 

    to

    modulate  mitochondrial  function.  In  one  study,  LEM  mutations  were  identied  via  high-through-

    put 

    exome 

    sequencing 

    [24] 

    in 

    lymphocytic 

    choriomeningitis 

    virus 

    clone13 

    (LCMV  

    Cl13)-infected

    mice  (‘Retro’ strain).  Specic mutations  enhanced  the  production  of   LCMV-specic cytotoxic

    CD8+  T   cells  (CTLs)  as   well  as  long-lived  memory   T   cell  numbers  [25].  Moreover,  LEM  in  CTLswas  shown  to  interact  with  CR6-interacting  factor  (CRIF1),  a   protein  needed  for  the  translation

    and 

    insertion 

    of  

    OXPHOS 

    peptides 

    into 

    the 

    IMM 

    [25,26]. 

    Presumably, 

    LEM 

    interacts 

    with 

    the

    OXPHOS  protein  CRIF1  to  increase  the  levels  of   mtROS  (Figure  1D).  The  discovery  of   LEM  and

    the  insights  into  its  role  further  implicate  mitochondria  in  immunity,  in  both  effector  and  memory

     T  

    cell 

    responses. 

    Whether 

    upregulation 

    of  

    LEM 

    in 

    the 

    mouse 

    Retro 

    strain 

    (where 

    the 

    phenotype

    was  bred  to  heterozygosity)  can  restore  CTL   immunity  and  enhance  memory  in  different

    contexts 

    may 

    prove 

    to 

    be 

    an 

    exciting 

    opportunity 

    to 

    explore 

    future 

    therapeutic 

    avenues.

    Recently, 

    another 

    interesting 

    link  

    between 

    mitochondria 

    and 

    immunity 

    has 

    been 

    reported.

    Shahni  and  colleagues  identied   signal  transducer  and  activator  of   transcription  2  (STAT2)

    as 

    an 

    activator 

    of   mitochondrial  ssion  [27]. A   mutation  in  STAT2  resulted  in  complete  loss  of 

    expression, 

    leading 

    to 

    severe 

    multiorgan 

    dysfunction 

    with 

    impaired 

    mitochondrial 

    ssion 

    in

    three  human  patients  who  had   received   the  live-attenuated  mumps–measels–rubella  (MMR)

    vaccination: 

    two 

    were 

    siblings 

    presenting 

    with 

    neurological 

    deterioration 

    and 

    one 

    was 

    STAT2-

    decient  patient. The   STAT2  deciency  had  not  caused   symptoms  until  exposure  to  viral

    challenge 

    in 

    this 

    patient 

    (the 

    MMR 

    vaccination). 

    Furthermore, 

    in 

    patient 

    broblasts 

    there 

    was

    decreased  expression  of   activated  dynamin-related  protein  1  (DRP1 ) and  increased   expression

    of  

    inactive 

    DRP1, which 

    the 

    authors 

    deemed 

    responsible 

    for 

    the 

    observed 

    hyperfused, 

    elon-

    gated 

    mitochondria 

    [27]. 

     The 

    authors 

    recapitulated 

    this 

    effect 

    by 

    silencing 

    STAT2 

    in 

    SHSY5Y 

    neuroblastoma  cells,   while  STAT2  overexpression  rescued   the  phenotype  [27].  The  link   between

    mitochondrial 

    dynamics 

    and 

    immunization 

    (memory 

    responses) 

    described 

    here 

    suggests 

    that

    disruption 

    of  

    the 

    JAK –STAT   signaling  pathway  may  impair  mitochondrial  dynamics  and  function

    and 

    could 

    potentially 

    provide 

    clues 

    to 

    why 

    patients 

    with 

    mitochondrial 

    diseases 

    are 

    susceptible

    to 

    viral 

    infections. 

     Together 

    these 

    examples 

    further 

    illustrate 

    the 

    interconnected 

    nature 

    of 

    mitochondrial 

    biology 

    in 

    various 

    cellular 

    processes 

    and 

    host 

    responses.

    Mitochondrial 

    Epigenetics

    Epigenetics  –  the  study  of   heritable  changes  in  gene  expression  that  do  not  alter  DNA   sequences

    –  is  a  major  eld  of   investigation  in  mitochondrial  biology.  Epigenetics  can  determine  the

    expression 

    of  

    nucleus-encoded 

    genes 

    in 

    accordance 

    with 

    environmental 

    cues. 

    Of  

    relevance,

    an 

    increasing 

    number 

    of  

    disorders 

    and 

    complex 

    phenomena 

    such 

    as 

    aging 

    have 

    been 

    associ-

    ated 

    with 

    mitochondrial 

    dysfunction 

    and 

    epigenetics. 

    Cytosine 

    methylation 

    is 

    an 

    epigenetic

    modication 

    of  

    DNA  

    catalyzed 

    by 

    DNA  

    methyltransferases 

    (DNMTs) 

    leading, 

    in 

    principle, 

    to

    transcriptional  silencing.  Epigenetic  studies  in  mitochondrial  biology  have  been  mostly  focused

    on 

    the 

    transcriptional 

    control 

    or 

    modication 

    of  

    nuclear 

    DNA  

    (nDNA), 

    since 

    DNMTs 

    were

    394  Trends in MolecularMedicine, May2016,Vol. 22,No. 5

  • 8/17/2019 A Mitochondria Odyssey

    5/13

    originally  thought  to  be  unable   to  access  mitochondria   in  vertebrates.  Also,  since  mtDNA   does  not

    contain 

    histones, 

    it 

    was 

    thought 

    that 

    mtDNA  

    could 

    not 

    be 

    epigenetically 

    modied, as 

    depicted 

    in

    Figure   2  [28].  Moreover,  early  attempts   to  utilize   mtDNA   methylation  as  a   biomarker  for  cancer

    detection 

    across 

    15 

    cancer 

    cell 

    lines 

    from 

    patients 

    with 

    gastric 

    and 

    colorectal 

    cancer 

    were 

    hindered

    by  the  lack   of   DNA  methylation  reported   across  all samples  tested.  Direct sequencing conrmed  an

    absence 

    of  

    methylated 

    mtDNA, 

    further 

    describing 

    mtDNA  

    methylation 

    as 

    rare 

    event 

    [29].

    However, 

    nDNA  

    modications 

    could 

    not 

    accurately 

    represent 

    the 

    whole 

    picture 

    when 

    considering

    overall  cellular  gene  regulation.  Thus,  several  epigenomic  hypotheses   have  been  formed  that   take

    into 

    account 

    the 

    regulation 

    and 

    crosstalk  

    of  

    both 

    nDNA  

    and 

    mtDNA  

    in 

    modulating 

    cell 

    function.

     The 

    rst 

    breakthrough 

    suggesting 

    role 

    for 

    epigenetics 

    in 

    mitochondria 

    came 

    from 

    the

    identication  and  characterization  of   DNMT1  in  mitochondria  from  MEFs  and   HCT116  human

    colon 

    carcinoma 

    cells 

    [30], 

    where 

    immunoprecipitation 

    against 

    5-methylcytosine 

    (5-mc) 

    or

    5-hydroxymethylcytosine  (5-hmc)  demonstrated  signicant   enrichment  compared  with  IgG

    controls  [30].   Mitochondrial  DNMT1  identication  subsequently  gave  way  to  the  identication

    of  

    DNMT3a, 

    which 

    also 

    localized 

    inside 

    mouse 

    and 

    human 

    central 

    nervous 

    system 

    mitochondrialfractions  [31].

    Using  bisulte  genomic  sequencing  and   next-generation  sequencing  on  mtDNA   regions  from

    human 

    HEK293 

    and 

    HCT116 

    cell 

    lines, 

    study 

    reported 

    that 

    the 

    overall 

    CpG 

    island 

    methylation

    frequency  was  less   than  0.1%   [32].   This  called   into  question  both   the  methods  involved  in  the

    detection 

    of  

    CpG 

    methylation 

    and 

    the 

    overarching 

    physiological 

    signicance 

    of  

    mtDNA  

    meth-

    ylation 

    in 

    epigenetic 

    regulation. 

    However, 

    the 

    pathophysiological 

    relevance 

    of  

    methylation 

    levels

    in  disease  etiology  cannot  be  ignored.  Recent   evidence  demonstrated  a   signicant  increase  in

    5-mc 

    and 

    decrease 

    in 

    DNMT3a 

    levels 

    in 

    spinal 

    cord 

    neurons 

    and 

    skeletal 

    muscle 

    myobrils 

    from

    transgenic  murine  amyotrophic  lateral  sclerosis   (ALS)  models  [33]. The  salient  message   from  this

    mtDNA

    CpG

    CpG CpG

    CpGCpG

    DNMTs

    (A)

    (B)

    mtDNA

    CpG

    Figure  2.  Epigenetic  Modications  of   Mitochondrial  DNA   (mtDNA).  (A) Two examples of mtDNA CpG islands in hypermethylated states are shown. DNA 

    methyltransferases (DNMTs) such as DNMT3a or DNMT1 methylate the 440 identied mtDNA islands. Methyl groups are indicated by a closed circle whereas open

    circles represent unmethylatedmtDNA.Hypermethylation has been implicated in cancer, amyotrophic lateral sclerosis (ALS), diabetic retinopathy, and the response to

    environmental toxicant exposure. (B) Twoexamplesof mtDNA CpGislands in hypomethylated statesare shown.Methyl groupsare indicatedby a closedcirclewhereas

    open circles represent unmethylated mtDNA. Hypomethylation of mtDNA has been detected in patients with, for example, Down's syndrome.

    Trends inMolecularMedicine, May2016, Vol. 22, No. 5 395

  • 8/17/2019 A Mitochondria Odyssey

    6/13

    study 

    was 

    that 

    mtDNA  

    methylation 

    was 

    tissue 

    specic and 

    could 

    contribute 

    to 

    the 

    degree 

    of 

    tissue 

    inammation 

    seen 

    in 

     ALS 

    pathology 

    in 

    mice 

    [33]. 

    Mitochondrial  genome-scale   analysis

    has 

    provided 

    platform 

    where 

    large-scale 

    bisulte 

    sequencing 

    can 

    be 

    mapped 

    to 

    the 

    human

    mitochondrial 

    genome 

    and 

    methylation 

    patterns 

    ascertained 

    with 

    an 

    expected 

    degree 

    of methylation

     

    heterogeneity 

    across 

    39 

    cell 

    line 

    publicly 

    available 

    datasets 

    [34]. Such 

    studies

    suggest 

    that 

    epigenetic 

    modication 

    of  

    mtDNA  

    is 

    more 

    prevalent 

    than 

    previously 

    thought.

    When 

    more 

    specically 

    considering 

    disease, 

    DNMT1 

    hypermethylation 

    might 

    play 

    role 

    in 

    the

    pathogenesis  of   diabetic  retinopathy   [35].  In  patients  with  diabetes,  nucleus-encoded  DNMT1

    is 

    translocated 

    into 

    retinal 

    mitochondria, 

    hypermethylating 

    the 

    mtDNA  

    control 

    (D-loop) 

    region

    where  transcription  and  replication  elements  are  located  [35].  Hypermethylation  of   this  region

    causes 

    aberrant 

    transcription 

    of  

    mitochondrial 

    genes 

    crucial 

    to 

    the 

    regulation 

    of  

    the 

    electron

    transport 

    chain, 

    thus 

    leading 

    to 

    the 

    generation 

    of   superoxide  radicals  promoting  a  hypergly-

    cemic  superoxide  radical  milieu  [35]. This  nding  underscores  the  importance  of   mtDNA 

    methylation 

    outside 

    classical 

    CpG 

    sites 

    and 

    highlights 

    the 

    regulatory 

    role 

    of  

    epigenetic 

    mod-

    ications  in  mitochondria  that  can  contribute  to  disease  [35,36].

     Anecdotally,  environmental  exposure  to  toxicants  has  been  shown  to  have  a  major  impact  not

    only 

    on 

    nDNA  

    but 

    potentially 

    on 

    mtDNA  

    as 

    well. 

    For 

    example, 

    workers 

    highly 

    exposed 

    to

    airborne  pollutants  (e.g.,   metals,  traf c-derived  particles,  benzene)  have  been  reported  to  exhibit

    increased  mtDNA   methylation  in  the  12S  rRNA   region  (MT-RNR1)  compared  with  workers

    exposed 

    to 

    low 

    levels 

    of  

    airborne 

    pollutants 

    [37]. 

    Of  

    signicance, 

    aberrant 

    methylation 

    of 

     MT-RNR1  could  lead   to  aberrant  mitochondrial  ribosome  function  and  protein  production

    [37]. 

     Although 

    further 

    validation 

    is 

    required 

    in 

    these 

    studies, 

    impaired 

    mitochondrial 

    protein

    production  stemming  from  epigenetic  changes  in  MT-RNR1  presumably  might  lead  to  envi-

    ronment-associated 

    pathologies 

    (e.g., 

    cancer, 

    lung 

    disease).

    With 

    continued 

    advances 

    in 

    the 

    understanding 

    of  

    the 

    regulatory 

    role 

    of  

    the 

    mitochondrial

    epigenome 

    in 

    mitochondrial 

    function, 

    novel 

    layer 

    of  

    regulatory 

    crosstalk  

    between 

    the 

    nucleus

    and  the  mitochondrion  is  emerging.   A   mitochondria-to-nucleus  pathway,  shown  in  Figure  3,   can

    transmit 

    signals 

    from 

    mtROS 

    to 

    the 

    nucleus 

    and 

    modulate 

    gene 

    expression. 

     An 

    example 

    of  

    this

    process  has  been  reported  with  the  inactivation  of   the  histone  demethylase  Rph1p  at   sub-

    telomeric 

    heterochromatin 

    [38]. 

    In 

    this 

    study, 

    mtROS 

    signaled 

    through 

     Tel1p 

    and 

    Rad53p

    (homologs  of   the  mammalian   DNA   damage   response  kinases   ATM  and   Chk2)  to  ensure  yeast

    longevity. 

     This 

    pathway 

    subsequently 

    inactivated 

    Rph1p 

    leading 

    to 

    transcriptional 

    silencing 

    of 

    telomeric 

    genes 

    [38]. 

    Moreover, 

    another 

    study 

    has 

    provided 

    evidence 

    linking 

    mtDNA  

    to 

    mito-

    chondrial  metabolites  to  regulate  nuclear  gene  expression  in  skeletal  muscle  SCs  (SMSCs)  [39].

     This 

    work  

    demonstrated 

    that 

    SMSCs 

    undergo 

    metabolic 

    switch 

    from 

    fatty 

    acid 

    oxidation 

    to

    glycolysis 

    (transpiring 

    in 

    mitochondria) 

    when 

    transitioning 

    from 

    quiescence 

    to 

    proliferation. 

     This

    led 

    to 

    decreases 

    in 

    both 

    intracellular 

    NAD+ levels 

    and 

    the 

    activity 

    of  

    the 

    histone 

    deacetylase

    sirtuin 

    (SIRT1), 

    resulting 

    in 

    elevated 

    histone 

    H4K16 

    acetylation 

    and 

    activation 

    of  

    muscle

    gene 

    transcription 

    [39]. 

     Therefore, 

    such 

    changes 

    in 

    metabolic 

    state 

    can 

    inuence 

    metabolitesand

     

    the 

    epigenetic 

    regulation 

    of  

    gene 

    expression 

    [39].

    Bidirectional 

    regulation 

    of  

    gene 

    expression 

    between 

    nDNA  

    and 

    mtDNA  

    presents 

    an 

    additional

    layer 

    of  

    complexity 

    with 

    the 

    presence 

    of  

    miRNA. 

    miRNAs 

    that 

    reside 

    on 

    both 

    the 

    OMM 

    and 

    IMM

    can 

    affect 

    epigenetic 

    regulation 

    and 

    in 

    turn 

    be 

    themselves 

    epigenetically 

    regulated. 

    Early 

    studies

    revealed 

    the 

    presence 

    of  

    15 

    nucleus-encoded 

    miRNAs 

    present 

    in 

    mitochondria 

    of  

    murine 

    liver

    tissues 

    [40]. 

     This 

    initially 

    raised 

    the 

    question 

    of  

    the 

    function 

    of  

    miRNAs 

    in 

    mitochondria, 

    bringing

    forth 

    the 

    possibility 

    of  

    an 

    alternative 

    mechanism 

    of  

    nuclear 

    control 

    of  

    mtDNA  

    function. 

     The

    miRNA   miR-1  has  been  found  to  enter  mitochondria  and  stimulate  the  translation  of   mtDNA   in

    muscle 

    cells 

    [41]. In 

    addition, 

    miRNA –mtDNA   crosstalk   was  also  suggested   in  a  rat   model  of 

    396  Trends in MolecularMedicine, May2016,Vol. 22,No. 5

  • 8/17/2019 A Mitochondria Odyssey

    7/13

    traumatic 

    brain 

    injury 

    (TBI) 

    [42]. Animals 

    with 

     TBI  –  a   leading  cause   of   cognitive  defects  in

    humans  –  exhibited  mitochondrial  dysfunction  and  dysregulation  of   a  set   of   miRNAs  expressed

    in  the  hippocampus  region  of   the  brain  [42].  Collectively,  these  studies  are   timely,  reinforcing  an

    epigenetic 

    coregulatory 

    role 

    of  

    nDNA, 

    mtDNA, 

    and, 

    presumably, 

    miRNA. 

    However, 

    whether

    miRNA   dysregulation  is  a  cause  or  a  result  of   mitochondrial  dysfunction  in  these  contexts

    remains 

    to 

    be 

    determined. 

    Filling 

    this 

    gap 

    in 

    understanding 

    should 

    be 

    major 

    focus 

    of  

    future

    research.

     The 

    epigenetics 

    of  

    both 

    nDNA  

    and 

    mtDNA  

    are 

    clearly 

    important 

    regulatory 

    processes 

    for 

    proper

    cell  function.  Studies  currently  positioned  to  obtain  a   better  understanding  of   mtDNA   epigenetic

    modications 

    and 

    the 

    crosstalk  

    between 

    the 

    two 

    epigenomes 

    are 

    now 

    at 

    the 

    forefront 

    of 

    biomedical 

    research.

    Mitochondria 

    in 

    SC 

    Biology

    SCs 

    have 

    become one of  

    the most potentially promising 

    therapeutic avenues for regenerativemedicine. Recent studies in

     

    SC 

    research 

    have demonstrated 

    that SCs isolated from human

    blastocysts 

    not only show conventional hallmark  

    characteristicsof  

    naive pluripotency 

    but 

    also

    exhibit additional 

    functional 

    features 

    such 

    as mitochondrial respiration [43]. SCs have 

    two

    dening 

    qualities: 

    self-renewal by 

    the production of  

    identical 

    daughter 

    cells 

    and the 

    ability 

    to

    produce 

    independent 

    daughter 

    cells 

    that 

    can differentiate into 

    many 

    different 

    cells. Research-

    ers 

    have 

    faced multiple challenges 

    associated with 

    studying SCs, some of  

    which 

    have 

    been

    overcome with 

    the 

    development 

    of  

    iPSCs. 

     This methodology 

    is 

    progressively allowing 

    the

    scientic 

    community 

    to 

    understand various 

    complex 

    factors 

    involved 

    in 

    regulating the main-

    tenance  of   SCs, with  the role  of mitochondria just   beginning to  be  woven  into   this complex

    picture.

    Rph1p

    Sirt1

    mtROS

    NAD+

    Nucleus

    Cytosol

    miRNA

    Figure 

    3. 

    Mitochondria–Nucleus 

    Epigenetic 

    Bidirectional 

    Pathways. 

    Mitochondrial reactive oxygen species

    (mtROS) and mitochondrial metabolites such as NAD+ can contribute to nuclear epigenetic regulation by inhibition of 

    histone 

    demethylase (Rph1p) and regulation of histone deacetylase SIRT1.miRNAsmove to themitochondria where they

    can 

    modulate epigenetic regulation and mitochondrial gene expression.

    Trends inMolecularMedicine, May2016, Vol. 22, No. 5 397

  • 8/17/2019 A Mitochondria Odyssey

    8/13

     Asymmetric 

    division 

    allows 

    SCs 

    to 

    generate 

    daughter 

    cells 

    with 

    differing 

    fates 

    [44]. 

     There 

    is

    evidence 

    suggesting 

    that 

    damaged 

    proteins 

    are 

    inherited 

    asymmetrically 

    [45] 

    and 

    this 

    trend 

    has

    also 

    been 

    observed 

    in 

    Saccharomyces 

    cerevisiae 

    [46]. 

    However, 

    there 

    is 

    limited 

    supportive

    evidence 

    to 

    indicate 

    that 

    mitochondria 

    asymmetrically 

    divide 

    in 

    mammalian 

    systems. 

     To 

    addressthis,

     

    recent 

    work  

    was 

    conducted 

    in 

    SCs 

    using 

    tag 

    techniques. 

    Photoactivatable 

    GFP 

    was

    tagged 

    to 

    MOM 

    protein 

    25 

    (paGFP-Omp25) 

    and 

    Snap-tag 

    was 

    used 

    to 

    track  

    apportioned

    mitochondria 

    in 

    daughter 

    cells 

    originating 

    from 

    stem-like 

    cells 

    [44] 

    recently 

    identied 

    from

    immortalized 

    human 

    mammary 

    cells 

    [47]. 

     The 

    data 

    indicated 

    that 

    mitochondria 

    were 

    not 

    evenly

    distributed  among  daughter  cells.   Interestingly,  through  uorescence-activated   cell   sorting

    (FACS) 

    and 

    replating 

    of  

    daughter 

    cell 

    populations 

    it 

    was 

    observed 

    that 

    daughter 

    cell 

    populations

    that  received  ‘younger’ mitochondria  displayed  stronger  stem-like  characteristics  such  as  a

    mammosphere-forming  ability  (Figure  4 ).   This  study  illustrates  the  power  of   controlling  the

    apportioning 

    of  

    mitochondria 

    into 

    daughter 

    cells 

    [44].

    SC 

    differentiation 

    is 

    tightly 

    regulated 

    process 

    that 

    is 

    crucial 

    for 

    both 

    animal 

    development 

    and

    tissue  homeostasis  [48].  However,  little  is  known  about  the  intrinsic  cellular  mechanisms

    governing  this  process.  One  recent  study  using   in  vivo  RNAi  in  Drosophila   melanogaster discovered  that  mitochondrial   ATP  synthase,  a   protein  that  chemically  synthesizes   ATP  from

     ADP 

    and 

    Pi   [49], plays  an  important  role  in  regulating  germ  cell  differentiation  and   ensuring

    germline  development  [48].  Furthermore,  knockdown  studies  of   other  members   of   the  OXPHOS

    system  demonstrated  that  ATP  synthase  acts  during  differentiation  through  a  mechanism  that  is

    separate 

    from 

    its 

    role 

    in 

    OXPHOS. 

     ATP 

    synthase 

    expression 

    was 

    observed 

    to 

    be 

    specically

    regulated  during  differentiation  [48].  With  the  use  of   electron  micrographs,  native  polyacrylamide

    Young

    Old

    Division 0

    Division 1

    Division 2

    Division 3

    Mitochondria

    Figure  4.  Mitochondria  in  Stem  Cell  Differentiation.  Asymmetrically dividing stem cells acquire young (yellow) and old

    (blue)mitochondria.Stem cells that acquire more youngmitochondria have an enhanced proliferation advantageover stem

    cells that acquire a greater number of old mitochondria. This has important implications in senescence.

    398  Trends in MolecularMedicine, May2016,Vol. 22,No. 5

  • 8/17/2019 A Mitochondria Odyssey

    9/13

    gel 

    electrophoresis, 

    and 

    in-gel 

     ATPase 

    assays, 

    it 

    was 

    demonstrated 

    that 

     ATP 

    synthase 

    dimer-

    ization 

    is 

    required 

    for 

    mitochondrial 

    crista 

    formation 

    during 

    differentiation 

    [48]. 

    Combining 

    these

    ndings 

    with 

    previous 

    results 

    demonstrating 

    differences 

    between 

    SCs 

    and 

    differentiated 

    cells

    (e.g., 

    cardiomyocytes, 

    follicle 

    cells) 

    in 

    mitochondrial 

    fusion 

    and 

    ssion

     

    as 

    well 

    as 

    IMMstructure,

     

    [50,51], 

    it 

    is 

    becoming 

    increasingly 

    apparent 

    that 

    mitochondria 

    could 

    play 

    important

    roles 

    in 

    the 

    regulation 

    of  

    SC 

    differentiation 

    and 

    function.

    Reinforcing 

    these ndings, recent research has 

    suggested 

    that 

    mitochondrial proteins such

    as   mitofusion-1  and -2 (Mfn1/2),  which are known to  be  intimately involved  in  controlling

    mitochondrial dynamics 

    and 

    energy 

    production, 

    play 

    an 

    extensive role in 

    regulating cell fate

    transition  [52].  It  was observed  that  during   the  early  stages of   reprogramming, around day  7,

    mitochondrial function 

    was 

    downregulated 

    with 

    an 

    associated 

    decrease in 

    Mfn1 /  2 

    levels.

    Mfn1 /  2 

    genetic 

    ablation or 

    pharmacological 

    inhibition of  

    mitochondrial fusion in 

    both human

    ESCs  andmouse  MEFs resulted  in  reprogramming  changes  and, furthermore,  demonstrated

    glycolytic 

    bioenergetic transition 

    to 

    meet 

    the energy demands 

    of  

    proliferating 

    pluripotent

    cells [52]. Other research has shown  that  mitochondrial uncoupling protein 2  (UCP2), a

    protein  that   regulates mitochondrial  respiration  by  controllingmetabolite  transportation out of mitochondria [53], appears  to  play   an   important role  in  the regulation  of   SC   differentiation  by

    blocking the shift from glycolysis to 

    cellular respiration [54]. Furthermore, 

    recent work  

    has

    shown  that  in  both human  andmouse ESCs, bioenergetics  processes,  namely  glycolysis,  are

    crucial in  the maintenance  of   the pluripotent  state [55].   This study employed   high-resolution

    NMR 

    and  13C 

    glucose-tracing using 

    mass 

    spectrometry in 

    pluripotent SCs to 

    document that

    glycolysis-mediated  changes in  acetyl-CoA   occurred with  differentiation  (decreased glycol-

    ysis) and also led to 

    H3K9/K27 histone acetylation 

    [55]. In 

    addition, 

    increases in 

    ROS

    production   have   been  associated with  SC   ‘aging’  or   loss  of regenerative capacity  [56],

    suggesting 

    that 

    ROS 

    production 

    may 

    play 

    regulatory 

    role in  stemness  and   SC  proliferation.

     Taken   together,  these results demonstrate that  through  the  control  of   mitochondrial  dynamics

    and 

    bioenergetics, novel approaches 

    to 

    promoting 

    somatic cel l reprogramming may be

    obtained.

    iPSCs 

    can be 

    created from somatic 

    cells through 

    forced expression 

    of  

    reprogramming

    factors.  iPSCs have  different  gene expression  patterns  [57], differentiation  potentiality [58],

    and 

    DNA  

    methylation 

    patterns 

    [59] 

    compared with ESCs. These dif ferences 

    have 

    led

    researchers  to   develop  a   technique known  as somatic cell nuclear transfer  (SCNT).  SCNT 

    allows 

    the transfer of  

    somatic cell nucleus into 

    an oocyte 

    with 

    subsequent 

    reprogramming 

    to

    convert it into 

    pluripotent 

    cell [60]. Recent evidence hasemerged 

    showing 

    thatmouse 

    ESCs

    with   different  mtDNA haplotypes  display differential  expression  of genes  associated  with   DNA 

    methyltransferases 

    and processes of  

    energy metabolism and pluripotency [61]. 

    However, 

    a

    problem 

    surfaces: 

    mismatching mitochondria between donor and recipient during ESC

    nuclear 

    transfer (NT-ESC) 

    might 

    lead to 

    immunoreactivity [62]. For example, 

    mouse 

    NT-ESCs

    were 

    generated 

    withmismatched 

    C57BL/6J 

    mitochondria andBALB/c nuclei. On 

    injection of 

    mismatched 

    NT-ESCs into 

    BALB/c 

    mice, there 

    was 

    an increase in 

    helper 

     T  

    cell activation 

    inaddition

     

    to 

    NT-ESC-directed antibody production [62]. 

     This result poses 

    challenge 

    to 

    the

    development 

    of  

    SCNT  

    therapy as 

    theheterogeneity level in 

    human 

    mitochondria is 

    higher 

    than

    that 

    in 

    mice.

    Recent   Advances   in  Mitochondrial  Therapeutics

     The  past  few  years  have  shown  a  glimpse  of   rapidly  evolving  techniques  that  allow  mitochondria

    to 

    be 

    studied 

    in 

    greater 

    detail. 

    Novel 

    sequencing 

    methods 

    and 

    immunoassays 

    coupled 

    with

    intricate  cellular  approaches  are    just  some   of   the  ways  in  which  the  study  of   mitochondria  has

    improved. 

    Mitoash 

    and 

    MitoParaquat 

    for 

    mtROS 

    measurements 

    and 

    Seahorse 

    for 

    bioener-

    getics  are  summarized  in   Table  1. Gradient  centrifugation  ( Table  1 )  allows  the  isolation  of 

    Trends inMolecularMedicine, May2016, Vol. 22, No. 5 399

  • 8/17/2019 A Mitochondria Odyssey

    10/13

    mitochondria 

    for 

    the 

    quantication 

    of  

    mtDNA  

    methylation 

    and 

    mapping 

    of  

    5-mC 

    and 

    5-hmC.

    Moreover,  existing  nDNA   tools  are  providing  exciting  prospects  that  can  be  applied  to  mtDNA.

    Bisulte  sequencing  and  liquid  chromatography–electrospray  ionization  tandem  mass   spec-

    trometry 

    (LC–ESI-MS/MS)  ( Table  1 )  as  well  as  af nitymethods  and   restriction  methods  are  being

    used,  but  the  best  way  seems   to  involve  a   combination  of   several  methods.  For  instance,  the

    combination 

    of  

    bisulte 

    sequencing 

    and 

    methylated 

    mtDNA  

    immunoprecipitation 

    assays 

    has

    accurately  shown  methylated  and   hydroxymethylated  cytosines  in  mtDNA   [34,36].

     This  progression  is  leading  towards  novel  therapeutics  and  improvements  of   existing  treatments

    that 

    may 

    achieve 

    what 

    was 

    previously 

    inconceivable. 

    Summarized 

    in 

     Table 

    are 

    examples 

    of 

    promising 

    new 

    treatments 

    that 

    utilize 

    our 

    knowledge 

    of  

    mitochondria: 

    MitoC, 

    phenformin,

    mitochondria-targeted  transcription  activator-like  effector  nucleases  (mitoTALENs),  and   SBI-

    0206965. 

    In 

    particular, 

    compelling 

    research 

    is 

    being 

    conducted 

    into 

    developing 

    mitochondrial

    replacement  therapies  (MRTs).  It  is  hoped  that  with  the  combined  utilization  of   in  vitro  fertilization

    and 

    MRTs, 

    mutated 

    maternal 

    mtDNA  

    and 

    unhealthy 

    mitochondria 

    can 

    be 

    replaced 

    with

    unmutated  donor  mtDNA   and  healthy  mitochondria.  Macaque-  and  human-based  studies  have

    demonstrated 

    that 

    MRT  

    may 

    be 

    viable 

    mitochondrial 

    disease 

    prevention 

    strategy 

    [63,64]. 

     A 

    study 

    with 

    human 

    oocytes 

    has 

    shown 

    that 

    following 

    nuclear 

    genome 

    exchange, 

    the 

    swapped

    pluripotent  cells   and  derived  broblasts  exhibited  normal  metabolic  proles  and  respiratory  chain

    enzyme 

    activity 

    compared 

    with 

    ESCs 

    and 

    ESC-derived 

    broblast 

    controls 

    [63]. 

     Another 

    study

    showed 

    that 

    replacing 

    mutant 

    mtDNA  

    with 

    healthy 

    mtDNA  

    using 

    spindle–chromosomal  com-

    plex 

    transfer 

    (ST) 

    gave 

    rise 

    to 

    healthy 

    rhesus 

    macaque 

    monkeys 

    [64]. 

     To 

    improve 

    fertility

    potential, 

     AUGMENT SM treatment 

    ( Table 

    2 ) 

    has 

    been 

    marketed. 

     This 

    involves 

    the 

    transfer 

    of 

    healthy 

    energy-producing 

    mitochondria 

    (AUGMENT SM

    processed) 

    from 

    woman's 

    own 

    pro-genitor

     

    egg 

    cells 

    taken 

    from 

    the 

    ovarian 

    lining 

    (EggPCs) 

    into 

    her 

    mature 

    egg 

    cells 

    in 

    combination

    with 

    sperm 

    during 

     in 

    vitro 

    fertilization 

    procedures; 

    it 

    is 

    licensed 

    in 

    only 

    some 

    countries 

    [65].

    Despite 

    these 

    promising 

    results, 

    there 

    has 

    been 

    much 

    resistance 

    towards 

    using 

    MRTs. 

    Many

    opponents 

    of  

    MRT  

    cite 

    that 

    studies 

    performed 

    on 

    invertebrates 

    and 

    mice 

    have 

    demonstrated

    altered 

    parameters 

    of  

    health 

    such 

    as 

    energy 

    production, 

    fertility, 

    and 

    learning 

    [66–68]. After

    taking 

    into 

    consideration 

    the 

    risks 

    of  

    MRT, 

    in 

    early 

    2015 

    the 

    UK  

    was 

    the 

    rst 

    country 

    to 

    change

    legislation 

    allowing 

    the 

    use 

    of  

    MRT  

    on 

    parents 

    who 

    want 

    to 

    conceive 

    child 

    but 

    are 

    at 

    risk  

    for

    having 

    child 

    with 

    mitochondrial 

    disease 

    [3]. 

     The 

    lessons 

    learned 

    from 

    these 

    earlier 

    pioneering

    studies  will  be  pivotal  in  setting  the  course  for  MRT-granting  legislation  to  be  passed   on  to  other

    nations.

     Table  1.  Mitochondrial   Technique   Advances

     Technique Application Principle Refs

    Mitoash Measurement of superoxide

    production

     An optical readout is produced at the

    single-mitochondrion level

    [79–81]

    MitoParaquat Measurement of superoxides A triphenylphosphonium (TPP) lipophilic

    cation conjugated to redox cycler

    paraquat; accumulation on matrix increases

    superoxides at the avin site of complex I

    [82]

    Seahorse Bioscience Measures extracellular ux in

    living cells

    Fluorescent oxygen sensors are used in a

    microplate assay format

    [83]

    Gradient centrifugation Mitochondrial purication Sucrose stop density gradient centrifugation

    analysis

    [84–87]

    LC–ESI-MS/MS mtDNA methylation quantication Separation and measurement of specic

    bases in DNA with subsequent analysis

    of  

    any modications

    [88,89]

    400  Trends in MolecularMedicine, May2016,Vol. 22,No. 5

  • 8/17/2019 A Mitochondria Odyssey

    11/13

    Concluding  Remarks:  ‘Eyes  Wide   Shut’We  came   to  the  eld   of   mitochondrial  biology  through  genetic  studies  of   one  of   the  most

    prevalent 

    eye 

    diseases 

    in 

    aging 

    populations,  age-related  macular   degeneration  (AMD)

    [69–72].  Mitochondrial  dysfunction  had   already  been  documented  in  age-related   diseases

    including 

     AMD 

    [72–74]. Further  studies  on  the  same   AMD-associated  gene  family  implicated

    the  mitochondrial  protein  high  temperature-dependent  serine  peptidase  2  (HtrA2)  in   AMD

    disease 

    [75–78]. As  mentioned  above,  MRT   is  currently  being  used  to  eliminate  dysfunctional

    mitochondria 

    in 

    rare 

    inherited 

    diseases. 

    For 

    common 

    disorders, 

    new 

    theme 

    has 

    emerged 

    from

    recent  work:  mitochondria  can  play  a  pivotal  role  in  immunity,  epigenetic  regulation,  and  SC

    development. 

    Deciphering 

    the 

    interplay 

    between 

    mitochondria 

    and 

    nuclear 

    processes 

    will 

    be

    critical  in  understanding  the  mitochondrial  role  in  cellular  function  in  these  three  areas  in  health

    and 

    disease. 

    From 

    public 

    health 

    point 

    of  

    view, 

    it 

    will 

    be 

    signicant 

    to 

    follow 

    these 

    lines 

    of 

    investigation,  potentially  providing  further  clues  to  the  participation  of   mitochondria  in  mediating

    responses 

    to 

    environmental 

    cues, 

    infection, 

    tissue 

    transplantation, 

    aging, 

    and 

    cellular 

    dysfunc-

    tion 

    as 

    in 

    the 

    case 

    of  

    autoimmune 

    disorders 

    and 

    neurodegenerative 

    diseases, 

    among 

    others.

     Answers  to  some   of   these  queries  (see  Outstanding  Questions)  may  yield  novel  approaches  to

    better 

    manage 

    or 

    prevent 

    severe 

    disease 

    and/or 

    to 

    facilitate 

    tissue 

    regeneration 

    strategies.

    When 

    contemplating 

    the 

    treatment 

    of  

    mitochondria-related 

    disorders, 

    the 

    most 

    important 

    task  

    is

    to 

    understand 

    how 

    to 

    better 

    translate 

    our 

    experimental 

    knowledge 

    to 

    patients 

    and 

    human

    populations 

    while 

    accounting 

    for  heteroplasmy   within  individuals.  Despite  recent   signicant

    progress, 

    scientists 

    need 

    to 

    continue 

    to 

    focus 

    on 

    the 

    multiple 

    hurdles 

    and 

    challenges 

    that 

    remainahead

     

    and 

    that 

    need 

    to 

    be 

    overcome.

     Acknowledgments

     The authors are grateful to Professor Steve Waxman for the opportunity and for advice in writing this review. They are also

    grateful to the anonymous reviewers for their input andcomments. This work is fundedby theSackler Foundation and the

    Rosebay Medical Foundation.

    References1. Burte, F. et al. (2015) Disturbed mitochondrial dynamics and

    neurodegenerative disorders. Nat. Rev. Neurol. 11, 11–24

    2. Ernster, L. andSchatz, G. (1981) Mitochondria: a historicalreview.

     J. Cell Biol. 91, 227s–255s

     Table  2.  Mitochondrial   Therapeutic   Advances

    Name Type Mechanism Application Refs

    MitoC Antioxidant

    (ascorbate)

    conjugated

    to TPP

     The antioxidant is targeted

    to mitochondria by TPP

    and can be taken up by

    mitochondria

    Mitochondria-targeted

    antioxidant and tool to

    explore the role of 

    ascorbate in mitochondria

    [90]

    Phenformin Mitochondria l

    inhibitor

    Induces apoptosis in LKB1-

    decient non-small cell lung

    cancer (NSCLC) cells

    Metabolism-based

    therapeutic for

    LKB1-decient tumors

    [91]

    SBI-0206965 ULK1 kinase

    inhibitor

    Inhibitor of autophagy and

    mitophagy

    Combined use with

    rapamycin to kill tumor

    cells

    [92,93]

     AUGMENT SM

    treatment

    Mitochondrial

    transfer

     Transfer of mitochondria

    from a woman's own

    immature EggPCs to

    supplement the existing

    mitochondria in her

    mature eggs

    Improving infertility and

     in vitro fertilization (IVF)

    procedures

    http://www.

    augmenttreatment.com

    [65]

    mitoTALENs Nuclease Targeted to mtDNA  

    mutation

    Keeping heteroplasmy

    below threshold levels

    [94,95]

    Outstanding  Questions

    Canwe link knowledgeof mutantmito-

    chondria to the prediction of disease

    recurrence risk?

    Howdo wedealwith mitochondrial het-

    eroplasmy for 

    various diseases and

    account for 

    this in therapeutic design?

    What steps can we take to ef  ciently

    and effectively collect human cohorts

    to study mitochondrial d isorders in

    both rare and chronic diseases?

    How do mitochondr ia adapt to the

    changing environment we experience?

    How are the well -known functions

    of the mitochondrion such as energy

    production linked to its emerging roles

    in  epigenetic regulation, stem cell-

    induced tissue regeneration, and

    immune defense?

    Do we know whether mitochondrial

    dysfunction is a primary cause of a

    disease or a 

    secondary effect resulting

    froma given disorder?Is causality con-

    text dependent?

    Can we rout inely replace damaged

    mitochondria within somatic stem cells

    with funct ioning mitochondria and

    inject them into t issues? If so, is the

    existing epigenetic program faithfully

    carried over into the grafted cells?

    Within the eld of mitochondrial trans-

    fer, how can we accurately analyze

    cellular subsets andMHCs in respond-

    ing (recipient) cells?

    Would mitochondrial progeny from tis-

    sue regeneration processes act in the

    same manner as parental mitochon-

    dria? If so, under what circumstances?

    How can scientists integrate the fast-

    growing eld of mitochondrial research

    with that of stem cells, epigenetics and

    immunobiology to treat diseases not

    previously thoughtto beassociatedwith

    mitochondrial dysfunction? Can these

    new elds  be used to improve diagnos-

    tic 

    and therapeutic procedures?

    Froman evolutionarypointof view, since

    mitochondria were thought to be incor-

    porated into multicellular organisms

    from single-cell bacteria, are we sti ll

    acquiring new mitochondria from our

    own microbiome? If so, are they trans-

    mittable 

    and functional in mitochondrial

    next-generation progeny?

    Trends inMolecularMedicine, May2016, Vol. 22, No. 5 401

    http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0005http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0005http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0005http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0005http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0005http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0005http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0005http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0005http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0010http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0010http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0010http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0010http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0010http://www.augmenttreatment.com/http://www.augmenttreatment.com/http://www.augmenttreatment.com/http://www.augmenttreatment.com/http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0010http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0010http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0005http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0005

  • 8/17/2019 A Mitochondria Odyssey

    12/13

    3. Claiborne,A.B. etal. (2016) Ethics of new technologies. Finding an

    ethical path forward for mitochondrial replacement. Science 351,

    668–670

    4. Galluzzi, L. etal. (2012) Mitochondria: master regulators of danger

    signalling. Nat. Rev. Mol. Cell Biol. 13, 780–788

    5. West, A.P. et al. (2015) Mitochondrial DNA stress primes theantiviral innate immune response. Nature 520, 553–557

    6. Hou, F. et al. (2011) MAVS forms functional prion-like aggregates

    to activate and propagate antiviral innate immune response. Cell 

    146, 448–461

    7. White, M.J.  et    al. (2014)    Apoptotic caspases suppress mtDNA-

    induced STING-mediated type I IFN product ion. 

    Cell  159,

    1549–1562

    8. Rongvaux,A. etal. (2014)Apoptoticcaspases preventthe induction

    of  

    type I interferons by mitochondrial DNA.Cell 159, 1563–1577

    9. Zhang,Y. andZheng, Y.(2016) Effects andmechanismsof potent

    caspase-1 inhibitor VX765treatment on collagen-inducedarthritis

    in  mice. Clin. Exp. Rheumatol. 34, 111–118

    10. Zaccara, G. and Schmidt, D. (2016) Do traditional anti-seizure

    drugs have a future? A review of potential anti-seizure drugs in

    clinical development. Pharmacol. Res. 104, 38–48

    11. Gurung, P. etal. (2015) Mitochondria: diversity in the regulationof 

    the NLRP3 inammasome. Trends Mol. Med. 21, 193–201

    12. Shimada,K. etal. (2012) OxidizedmitochondrialDNA activatesthe

    NLRP3 inammasome during apoptosis. Immunity 36, 401–414

    13. Nakahira, K. et al. (2011) Autophagy proteins regulate innate

    immune responses by inhibiting the release of mitochondrial

    DNA mediated by the NALP3 inammasome. Nat. Immunol.

    12, 222–230

    14. Lamkan, M.and Dixit,V.M. (2012)Inammasomesand theirroles

    in health and disease.  Annu. Rev. Cell Dev. Biol. 28, 137–161

    15. Kasashima, K. et a l. (2011) Human mitochondrial transcription

    factor A is required for the segregation of mitochondrial DNA in

    cultured cells. Exp. Cell Res. 317, 210–220

    16. Julian, M.W. et al. (2013) Mitochondrial transcription factor A, an

    endogenous danger signal, promotes TNF/ release via RAGE-

    and TLR9-responsive plasmacytoid dendritic cells.PLoS ONE 8,

    e72354

    17. Julian, M.W. et al. (2012) Mitochondrial transcription factor A 

    serves as a danger signal by augmenting plasmacytoid dendritic

    cell responses to DNA. J. Immunol. 189, 433–443

    18. Zhang, Q. et al. (2010) Circulating mitochondrial DAMPs cause

    inammatory responses to injury. Nature 464, 104–107

    19. Klune, J.R. et al. (2008) HMGB1: endogenous danger signaling.

    Mol. Med. 14, 476–484

    20.  Tian, J. et al. (2007) Toll-like receptor 9-dependent activation by

    DNA-containing immune complexes is mediated by HMGB1 and

    RAGE. Nat. Immunol. 8, 487–496

    21. Palumbo, R. etal. (2007)Cellsmigrating to sites of tissuedamage

    inresponseto thedangersignal HMGB1requireNF-k B activation.

     J. Cell Biol. 179, 33–40

    22. 

    van der Windt, G.J. and Pearce, E.L. (2012) Metabolic switching

    and fuel choice during T-cell differentiation andmemory develop-

    ment. Immunol. Rev. 249, 27–42

    23. Blagih, J. et al. (2015) The energy sensor AMPK regulates T cell

    metabolic adaptationand effector responses in vivo.Immunity 42,

    41–54

    24. Faireld, H. et a l. (2011) Mutation discovery in mice by whole

    exome sequencing.Genome Biol. 12, R86

    25. Okoye, I. et al. (2015) T cell metabolism. The protein LEM pro-

    motes CD8+  T cell immunity through effects on mitochondrial

    respiration. Science 348, 995–1001

    26. Kim, S.J. et a l. (2012) CRIF1 is essential for the synthesis and

    insertion of oxidative phosphorylation polypeptides in the mam-

    malian mitochondrial membrane. Cell Metab. 16, 274–283

    27. Shahni, R. et al. (2015) Signal transducer and activator of tran-

    scription 2 deciency is a novel disorder of mitochondrial ssion.

    Brain 138 (Pt 10), 2834–2846

    28. Iacobazzi, V. et a l. (2013) Mitochondrial DNA methylation as a

    next-generation biomarker and diagnostic tool. Mol. Genet.

    Metab. 110, 25–34

    29. Maekawa, M. etal. (2004) Methylation ofmitochondrial DNA is not

    usefulmarker for cancer detection.Clin.Chem. 50,1480–1481

    30. Shock,L.S. etal. (2011) DNAmethyltransferase1, cytosinemeth-

    ylation, and cytosine hydroxymethylation inmammalianmitochon-

    dria. Proc. Natl. Acad. Sci. U.S.A. 108, 3630–3635

    31.   Chestnut, B.A.  et    al. (2011)   Epigenetic regulation of   motorneuron

     

    cel l death through DNA  

    methylation. 

     J. 

    Neurosci. 31,

    16619–16636

    32.  Hong, E.E. et a l. (2013) Regionally specic and genome-wide

    analyses conclusively demonstrate the absence of CpG methyl-

    ation in human mitochondrial DNA.Mol. Cell Biol. 33,2683–2690

    33. Wong, M. et al. (2013) Mitochondrial DNMT3A and DNA methyl-

    ation in skeletal muscle and CNS of transgenic mouse models of 

     ALS. Front. Cell. Neurosci. 7, 279

    34. Ghosh, S. etal. (2014) Comparative analysis of humanmitochon-

    drial methylomes shows distinct patterns of epigenetic regulation

    in mitochondria. Mitochondrion 18, 58–62

    35. Mishra, M. and Kowluru, R.A. (2015) Epigenetic Modication of 

    Mitochondrial DNA in the Development of Diabetic Retinopathy.

    Invest. Ophthalmol. Vis. Sci. 56, 5133–5142

    36. Bellizzi, D. et al. (2013) The control region of mitochondrial DNA 

    shows an unusual CpG and non-CpG methylation pattern. DNA

    Res. 20, 537–547

    37. Byun, H.M. et a l. (2013) Effects of airborne pollutants on mito-

    chondrial DNA methylation. Part. Fibre Toxicol. 10, 18

    38. Schroeder, E.A. et al. (2013) Epigenetic silencing mediates mito-

    chondria stress-induced longevity.Cell Metab. 17, 954–964

    39. Ryall, J.G. et al. (2015) The NAD+-dependent SIRT1 deacetylase

    translatesa metabolicswitch intoregulatory epigenetics in skeletal

    muscle stem cells.Cell Stem Cell 16, 171–183

    40. Kren,B.T. etal. (2009) MicroRNAs identied inhighly puried liver-

    derived mitochondria may play a  role in apoptosis. RNA Biol. 6,

    65–72

    41. Zhang, X. etal. (2014) MicroRNA directly enhances mitochondrial

    translation during muscle differentiation.Cell 158, 607–619

    42. Wang,W.X. etal. (2016) Mitochondria andmicroRNA crosstalk in

    traumatic brain injury. Prog. Neuropsychopharmacol. Biol.

    Psychiatry 

    43. Guo,G. etal. (2016) NaivePluripotent StemCells Derived Directly

    from Isolated Cells of the Human Inner Cell Mass.Stem Cell Rep.

    Published online February 27, 2016. http://dx.doi.org/10.1016/j.

    stemcr.2016.02.005

    44. Katajisto, P. et al. (2015) Stem cells. Asymmetric apportioning of 

    aged mitochondria between daughter cells is required for stem-

    ness. Science 348, 340–343

    45. Rujano, M.A. et a l. (2006) Polarised asymmetric inheritance of 

    accumulated protein damage in higher eukaryotes. PLoS Biol.

    4, e417

    46. Spokoini, R. et a l. (2012) Connement to organelle-associated

    inclusion structures mediates asymmetric inheritance of aggre-

    gated protein in budding yeast. Cell Rep. 2, 738–747

    47. Chaffer, C.L.etal. (2011) Normal andneoplastic nonstemcellscan

    spontaneously convert to a stem-like state.Proc. Natl. Acad. Sci.

    U.S.A. 108, 7950–7955

    48.  Teixeira, F.K. et al. (2015) ATP synthase promotes germ cell

    differentiation independent of oxidative phosphorylation. Nat. Cell 

    Biol. 17, 689–696

    49. Walker, J.E. (2013)The ATPsynthase: theunderstood,the uncer-tain and the unknown. Biochem. Soc. Trans. 41, 1–16

    50. Kasahara, A. etal. (2013) Mitochondrial fusiondirects cardiomyo-

    cyte differentiation via calcineurin and Notch signaling. Science

    342, 734–737

    51. Mitra, K. et al. (2012) DRP1-dependent mitochondrial ssion ini-

    tiatesfolliclecell differentiationduringDrosophilaoogenesis. J. Cell 

    Biol. 197, 487–497

    52. Son, M.J. et al. (2015) Mitofusins deciency elicits mitochondrial

    metabolic reprogramming to pluripotency. Cell Death Differ. 22,

    1957–1969

    53.  Vozza, A. et al . (2014) UCP2 transports C4 metabolites out of 

    mitochondria, regulating glucose and glutamine oxidation. Proc.

    Natl. Acad. Sci. U.S.A. 111, 960–965

    402  Trends in MolecularMedicine, May2016,Vol. 22,No. 5

    http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0015http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0015http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0015http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0015http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0015http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0015http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0015http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0015http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0015http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0020http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0020http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0020http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0020http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0020http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0020http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0020http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0020http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0025http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0025http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0025http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0025http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0025http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0025http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0025http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0025http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0030http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0030http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0030http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0030http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0030http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0030http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0030http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0030http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0035http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0035http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0035http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0035http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0035http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0035http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0035http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0035http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0035http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0035http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0035http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0035http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0035http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0035http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0035http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0040http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0040http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0040http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0040http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0040http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0040http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0040http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0040http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0040http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0040http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0045http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0045http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0045http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0045http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0045http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0045http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0045http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0045http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0045http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0050http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0050http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0050http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0050http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0050http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0050http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0050http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0055http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0055http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0055http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0055http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0055http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0055http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0055http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0055http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0055http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0055http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0060http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0060http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0060http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0060http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0060http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0060http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0060http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0060http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0060http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0060http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0065http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0065http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0065http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0065http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0065http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0065http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0065http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0065http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0065http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0065http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0065http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0070http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0070http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0070http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0070http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0070http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0070http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0070http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0070http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0070http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0070http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0075http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0075http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0075http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0075http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0075http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0075http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0075http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0075http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0075http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0080http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0080http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0080http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0080http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0080http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0080http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0080http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0080http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0080http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0085http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0085http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0085http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0085http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0085http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0085http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0085http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0085http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0085http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0090http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0090http://refhub.elsevier.com/S1471-4914(16)30004-1/sbref0090http://refhub.elsevier.com/S1471-491