8.3 - firefoam

30
7/25/2019 8.3 - fireFoam http://slidepdf.com/reader/full/83-firefoam 1/30 LES of Thermal and Fire Plumes Y. Wang, P. Chatterjee, J. de Ris FM Global, Research Division Norwood, MA, USA 6 th International Seminar on Fire and Explosion Hazards, April 2010, Leeds, UK

Upload: crazymac7

Post on 25-Feb-2018

255 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: 8.3 - fireFoam

7/25/2019 8.3 - fireFoam

http://slidepdf.com/reader/full/83-firefoam 1/30

LES of Thermal andFire Plumes

Y. Wang, P. Chatterjee, J. de Ris

FM Global, Research Division

Norwood, MA, USA

6th International Seminar on Fire and Explosion Hazards, April 2010, Leeds, UK

Page 2: 8.3 - fireFoam

7/25/2019 8.3 - fireFoam

http://slidepdf.com/reader/full/83-firefoam 2/30

Background• FM Global research program

 – To develop CFD fire modelingcapability for large-scale fires

including fire growth and

extinguishment, which will help FM

Global to reduce the number of

required large-scale tests

• Code platform: OpenFOAM

Page 3: 8.3 - fireFoam

7/25/2019 8.3 - fireFoam

http://slidepdf.com/reader/full/83-firefoam 3/30

Why OpenFOAM Platform• Open source CFD toolbox

http://www.opencfd.co.uk/openfoam/index.html• Object-Oriented Programming (C++)

• State-of-the-art CFD techniques

 – Massive parallel

 – Unstructured mesh

 – Numerical schemes – Physical models

 – ……..

Page 4: 8.3 - fireFoam

7/25/2019 8.3 - fireFoam

http://slidepdf.com/reader/full/83-firefoam 4/30

FireFOAM• Solver based on OpenFOAM for fire modeling

 – http://code.google.com/p/firefoam-dev – Industrial scale fire growth and suppression

 – Platform for fire related submodels

• Buoyant turbulent diffusion flame• Soot and radiation: (Chatterjee et. al. S30P2)

• Pyrolysis (Chaos et. al. S11P1)

• Water droplet transport• Surface water film flow

Flame spread in parallel panel(Krishnomoorthy et al. S25P3)

FireFOAM

Combustion

Soot/Radiation

Pyrolysis

Page 5: 8.3 - fireFoam

7/25/2019 8.3 - fireFoam

http://slidepdf.com/reader/full/83-firefoam 5/30

Outline• FireFOAM gas phase solver 

• Thermal plume validation

• Fire plume validation

Page 6: 8.3 - fireFoam

7/25/2019 8.3 - fireFoam

http://slidepdf.com/reader/full/83-firefoam 6/30

FireFOAM: Governing Equations

0 j

 j

u

t x

 ρ  ρ    ∂∂+ =

∂ ∂

Pr 

 j   t 

 j j t j

u Z  Z Z  Dt x x x

 ρ    ν  ρ  ρ 

⎛ ⎞∂   ⎛ ⎞∂ ∂ ∂

+ = +⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

( )  2

3

i j ji i k t ij i

 j i j j i k 

u u uu u u pg

t x x x x x x

 ρ  ρ  ρ ν ν δ ρ 

⎛ ⎞⎛ ⎞∂ ∂∂ ∂ ∂∂ ∂+ = − + + + − +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

Pr 

 j   t 

 j j t j

u hh Dp h Dt x Dt x x

 ρ    ν  ρ   ρ ⎛ ⎞∂   ⎛ ⎞∂ ∂ ∂+ = + +⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

Momentum

TotalEnthalpy

Mass

Mixture

Fraction

( )0

,   ( )T 

o

 f k k k k T 

k k 

h h Y Cp Y d  τ τ = +∑ ∑∫ 

 

Sensible enthalpyChemical enthalpy

Page 7: 8.3 - fireFoam

7/25/2019 8.3 - fireFoam

http://slidepdf.com/reader/full/83-firefoam 7/30

Numerical Method• Pressure based segregated solver

(SIMPLE/PISO)• 2nd order implicit Finite Volume discretization

• Unstructured polyhedral mesh

• Massive parallelization

Page 8: 8.3 - fireFoam

7/25/2019 8.3 - fireFoam

http://slidepdf.com/reader/full/83-firefoam 8/30

LES SGS Closure• SGS stress tensor – eddy viscosity model

• Turbulent flux – gradient diffusion model

 – One equation model

( ) ( )k 

k k k P

 ρ  ρ ρν ε 

∂+ ∇ ⋅ = ∇ ⋅ ∇ + −

∂u

2/1k ck k    Δ=ν    12/3   −Δ=   k cε ε 

Page 9: 8.3 - fireFoam

7/25/2019 8.3 - fireFoam

http://slidepdf.com/reader/full/83-firefoam 9/30

Diffusion Combustion Model• Single mixture fraction based

• Infinite fast chemistry• Beta PDF for SGS mixture fraction

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

 

   M  a  s  s   f  r  a  c   t   i  o  n

Mixture fraction Z

 Fuel

 Oxidizer 

1

0( ) ( )

k k Y Y Z Pdf Z dZ  =

( )k Y Z    ( )Pdf Z 

Page 10: 8.3 - fireFoam

7/25/2019 8.3 - fireFoam

http://slidepdf.com/reader/full/83-firefoam 10/30

Validation 1: Thermal Plume• Shabbir & George (JFM, 1994)

 – D = 0.0635 m, V = 0.98 m/s – T = 295 C, T0 = 25 C

 – Re = 1300

 – Fr = 1.5

 – Synthetic turbulent inlet BC used – Long-time average for statistics (10-30s)

Page 11: 8.3 - fireFoam

7/25/2019 8.3 - fireFoam

http://slidepdf.com/reader/full/83-firefoam 11/30

Mesh – Domain: 15D * 20D

 – Mesh: 400k cells

• 32 across nozzle, (0.2cm)

• 60 radial cells outside nozzle (3.5% stretch ratio)

•  Azimuthal 48 cells, axial 120 cells (1cm)

Page 12: 8.3 - fireFoam

7/25/2019 8.3 - fireFoam

http://slidepdf.com/reader/full/83-firefoam 12/30

Centerline Mean Temperature Velocity( )   3/1

0

3/1

04.3  −

−=   y yF V c( )  5/32/3

0 09.4 /c cT F y y g β   −

Δ = −

0 2 4 6 8 10 12 14 16 180.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

 

   V   [  m   /  s   ]

y / D

 FireFOAM

 Exp S & G

0 2 4 6 8 10 12 14 16 180.0

0.1

0.2

0.3

0.4

0.5

 

   T   /   T

y / D

 FireFOAM

 Exp S & G

Page 13: 8.3 - fireFoam

7/25/2019 8.3 - fireFoam

http://slidepdf.com/reader/full/83-firefoam 13/30

2 4 6 8 10 12 14 16 180.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

   T   '    /   (   T

  -   T   0   ) ,  v   '    /   V

  a  n   d  u   '    /   V

y / D

 T' / (T-T0)

 v' / Vc

 u' / Vc

Centerline Turbulent Fluctuations

Exp: 36%-42% (jet 18%)

Exp: 25%-33%

Page 14: 8.3 - fireFoam

7/25/2019 8.3 - fireFoam

http://slidepdf.com/reader/full/83-firefoam 14/30

Radial Self-Similarity Profile: T and V

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

    T   / 

  c

   T  c

r/y

 8D

 12D

 16D

 Exp S&G

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 

   V   /   V

  c

r/y

 8D

 12D

 16D

 Exp S&G

268( / )r y

c c

T e

 β 

 β 

−Δ=

Δ

258 ( / )r y

c

V e

−=

Page 15: 8.3 - fireFoam

7/25/2019 8.3 - fireFoam

http://slidepdf.com/reader/full/83-firefoam 15/30

Self-similarity: Reynolds Stress

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35 8D

 12D

 16D

 Exp S&G

 

  u  r  m  s

   /   V

  c

r/y-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35 8D

 12D

 16D

 Exp S&G

 

  v  r  m  s

   /   V

  c

r/y

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

 8D

 12D

 16D

 Exp S&G

 

  u  v   /   V

  c   2

r/y

Page 16: 8.3 - fireFoam

7/25/2019 8.3 - fireFoam

http://slidepdf.com/reader/full/83-firefoam 16/30

Self-similarity: Turbulent Heat Flux

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4-0.1

0.0

0.1

0.2

0.3

0.4

0.5

 

   t  r  m  s

   / 

   T  c

r/y

 8D

 12D

 16D

 Exp S&G-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

 8D

 12D

 16D Exp S&G

 

  v   t   /   V

  c

   T  c

r/y

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

 8D

 12D

 16D Exp S&G

 

  u   t   /   V

  c

   T  c

r/y

Page 17: 8.3 - fireFoam

7/25/2019 8.3 - fireFoam

http://slidepdf.com/reader/full/83-firefoam 17/30

2 4 6 8 10 12 14 16 180.0

0.2

0.4

0.6

0.8

1.0

 

   <  v   '   T   '   >   /   <  v   '   >   <   T   '   >

y / D

 v' t' correlation coefficient

Correlation Coefficient

Experimental (S&G, 1994, George et al. 1977) value: 0.67-0.7

2 2

' ' / ' 'v T v T  

-0.2 -0.1 0.0 0.1 0.20.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 8D 12D

 16D

 

   <  v   '   T   '   >   /   <  v   '   >   <   T   '   >

r/y

Centerline Radial

Page 18: 8.3 - fireFoam

7/25/2019 8.3 - fireFoam

http://slidepdf.com/reader/full/83-firefoam 18/30

Thermal Plume: Summary• FireFOAM capable of model buoyancy-driven

turbulent – Centerline temperature and velocity follow

theoretical decay rate

 – High turbulent fluctuations captured – Self-similarity observed in both mean and

fluctuation quantities

Page 19: 8.3 - fireFoam

7/25/2019 8.3 - fireFoam

http://slidepdf.com/reader/full/83-firefoam 19/30

Validation 2: Fire Plumes• B. J. McCaffrey,1979

• 30 cm x 30 cm square burner • 5 Methane flames (scaling)

*

2 p

QQ

c T gDD ρ ∞ ∞

Q [kW] 14 22 23 45 58

Q* 0.19 0.29 0.44 0.60 0.77

Page 20: 8.3 - fireFoam

7/25/2019 8.3 - fireFoam

http://slidepdf.com/reader/full/83-firefoam 20/30

Case Setup• Mesh:

 – 389k unstructured mesh – 24 cells across burner 

• Domain: 3m x 3m x 3m

•  Average time: 13 seconds

•  Assumptions:

 – Fixed radiation fraction 20%

Page 21: 8.3 - fireFoam

7/25/2019 8.3 - fireFoam

http://slidepdf.com/reader/full/83-firefoam 21/30

0 0.5 1 1.5 2 2.5 3

-60

-40

-20

0

20

40

60

Y [ m ]

   E

  n   t   h  a   l  p  y   f   l  o  w  r  a   t  e   [   k   W   ]

 

h

hs

hc

h(0)-hc

Energy Conservation

total enthalpy

sensible enthalpy

chemical enthalpy

58kW fire, 20% radiant loss

20% loss

20% loss

Page 22: 8.3 - fireFoam

7/25/2019 8.3 - fireFoam

http://slidepdf.com/reader/full/83-firefoam 22/30

0.01 0.02 0.04 0.08 0.2 0.3 0.550

80

100

200

300400

500600

800

10001200

Y/Q2/5

 [ m ⋅ kW-2/5

 ]

      Δ    T

   [   K

   ]

 

14 kW

22 kW33 kW

45 kW

58 kW

McCaffrey

0.01 0.02 0.04 0.08 0.2 0.3 0.550

80

100

200

300400

500600

800

10001200

Y/Q2/5

 [ m ⋅ kW-2/5

 ]

      Δ    T

   [   K

   ]

 

14 kW

22 kW33 kW

45 kW

58 kW

McCaffrey

2

2/52 0.9

T    k Y T 

g Q

η 

∞   ⎛ ⎞⎛ ⎞Δ =   ⎜ ⎟⎜ ⎟

⎝ ⎠   ⎝ ⎠

0=η 

1−=η 

3/5−=η 

Flame Intermittent Plume

Normalized Centerline Temperature

Page 23: 8.3 - fireFoam

7/25/2019 8.3 - fireFoam

http://slidepdf.com/reader/full/83-firefoam 23/30

0.01 0.02 0.04 0.08 0.2 0.3 0.5

0.3

0.4

0.5

0.6

0.8

1

2

Y/Q2/5

 [ m ⋅ kW-2/5

 ]

   V   /   Q

   1   /   5

    [  m   ⋅  s  -   1    ⋅

   k   W  -   1   /   5

    ]

 

14 kW

22 kW33 kW

45 kW

58 kW

McCaffrey

0.01 0.02 0.04 0.08 0.2 0.3 0.5

0.3

0.4

0.5

0.6

0.8

1

2

Y/Q2/5

 [ m ⋅ kW-2/5

 ]

   V   /   Q

   1   /   5

    [  m   ⋅  s  -   1    ⋅

   k   W  -   1   /   5

    ]

 

14 kW

22 kW33 kW

45 kW

58 kW

McCaffrey

1/5 2/5

V Y 

k Q Q

η 

⎛ ⎞=

  ⎜ ⎟⎝ ⎠

2/1=η 

0=η 

3/1−=η 

Flame Intermittent Plume

Normalized Centerline Velocity

Page 24: 8.3 - fireFoam

7/25/2019 8.3 - fireFoam

http://slidepdf.com/reader/full/83-firefoam 24/30

10 20 30 40 50 600

0.5

1

1.5

HRR [ kW ]

   F   l  a  m  e   H  e   i  g   h

   t   [  m   ]

 

Heskestad

Zukoski

Cox & ChittyDelichatsios

Current Simulations

10 20 30 40 50 600

0.5

1

1.5

HRR [ kW ]

   F   l  a  m  e   H  e   i  g   h

   t   [  m   ]

 

Heskestad

Zukoski

Cox & ChittyDelichatsios

Current Simulations

0.08Q2/5

0.2Q2/5

Flame Zone

Plume Zone

Intermittent Zone

Flame Height

*2/53.7 1.02 f 

 H Q D D= −

Page 25: 8.3 - fireFoam

7/25/2019 8.3 - fireFoam

http://slidepdf.com/reader/full/83-firefoam 25/30

10 20 30 40 50 60-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

HRR [ kW ]

   V   i  r   t  u  a   l    O  r   i  g   i  n   [  m   ]

 

Heskestad

Current Simulations

Virtual Origin

2/5

0   1.02 0.083 Z D Q= − +  

Page 26: 8.3 - fireFoam

7/25/2019 8.3 - fireFoam

http://slidepdf.com/reader/full/83-firefoam 26/30

0 0.5 1 1.5 2 2.5 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y [ m ]

                                 

 

14 kW22 kW

33 kW

45 kW

58 kW

Local Froude Number 

Page 27: 8.3 - fireFoam

7/25/2019 8.3 - fireFoam

http://slidepdf.com/reader/full/83-firefoam 27/30

Entrainment

0 0.2 0.4 0.6 0.8 1 1.20

5

10

15

Y / Flame Height

   1   /   E  q  u   i  v  a   l  e  n  c  e   R  a   t   i  o

 

14 kW

22 kW

33 kW45 kW

58 kW

10-12 times stoichiometric

air entrained at flame tip

Linear

Page 28: 8.3 - fireFoam

7/25/2019 8.3 - fireFoam

http://slidepdf.com/reader/full/83-firefoam 28/30

Conclusions•  A LES solver – FireFOAM, has been developed

and validated in thermal and fire plumes – Conservation verified

 – Buoyancy-driven turbulence captured

 – Correct scaling in near/ far fields observed

 – Flame height & entrainment

 – Boundary treatment adequate• Inlet, entrainment and outlet

Page 29: 8.3 - fireFoam

7/25/2019 8.3 - fireFoam

http://slidepdf.com/reader/full/83-firefoam 29/30

Future Work for FireFOAM• Gas phase

 – Validation for large fires and wall fires• SGS treatment for larger grid sizes

• SGS models with buoyancy effect

• Wall models

 – Numerical enhancement

• Boundedness, conservation, efficiency, etc

 – Gas phase extinction

Page 30: 8.3 - fireFoam

7/25/2019 8.3 - fireFoam

http://slidepdf.com/reader/full/83-firefoam 30/30

 Acknowledgement• OpenCFD

 – Henry Weller  – Sergio Ferraris

• FM Global

 – Sergey Dorofeev

 – Regis Bauwens

 – Yibing Xin – Franco Tamanini