6828830 sigtran presentation template 3reliance22 feb07

Upload: arvind-kumar

Post on 05-Apr-2018

224 views

Category:

Documents


1 download

TRANSCRIPT

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    1/53

    These presentation materials describe Tekelec's present plans to develop and make available to its customers certain

    products, features and functionality. Tekelec is only obligated to provide those deliverables specifically included in a

    written agreement signed by Tekelec and customer.

    SIGTRANBy Andrew Penrose

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    2/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 2

    Why SIGTRAN?

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    3/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 3

    Reasons to deploy SIGTRAN

    Scaleable Network

    Fewer capacity upgrades (especially complex upgrades) are required in the signallingnetwork as traffic levels increase. This is because the bandwidth of the SIGTRAN connection

    is far greater.

    Improved SLS loadsharing within link-set

    Having fewer high capacity signalling links in a link-set leads to more even SLS loadsharing.

    For instance you no longer need to ensure all SLS values are present at the STP in order toevenly loadshare messages to an end point (not the case with a 16x64k link-set), thus

    making network design far simpler.

    SCCP Class 1 load-sharing

    Class 1 messages rely on the SLS value to ensure in-sequence delivery at the far end. This

    usually means that no more than 16 links can be used by a signalling element to transmit

    Class 1 messages (even if more than 16 links are deployed). Also random SLS type features

    can not be deployed on the network to ease link load imbalances. Again having fewer high

    capacity signalling links helps to overcome this issue.

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    4/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 4

    Fewer network elements

    The SS7 bottleneck can now be removed by deploying SIGTRAN connectivity to signallingelements (especially relevant for databases (HLR) and IN elements). Instead the capacity

    of an element will now be governed by its CPU capacity.

    Greater capacity per element can lead to a reduction in the number of elements required in

    the network, thus leading to reduced network complexity and cost.

    Cost

    SIGTRAN can reduce cost by removing the need to purchase expensive SS7 stacks,

    associated interfaces and licences on signalling end elements.

    For the equivalent bandwidth at the same level of service, IP transport can be much

    cheaper than the cost of traditional TDM links.

    TDM links are traditionally distance sensitive while IP transport is typically priced on

    bandwidth rather than distance

    Reasons to deploy SIGTRAN

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    5/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 5

    Single Link-set

    SIGTRAN can remove the need to deploy Multiple Point Code and Duplicate Point Code

    features which are typically used to increase the number of signalling links / link-sets

    between two signalling elements.

    Removing the need to deploy such features can lead to a reduction in cost and network

    complexity.

    Failover

    M3UA can be used to provide failover of signalling traffic between an active and standby call

    server which are deployed using a single point code. This is particularly relevant when

    deploying a Release 4 network.

    Future Proof

    Many of the advantages gained from the use of SIGTRAN could also be gained through the

    use of High Speed TDM links (capacity, loadsharing etc), however SIGTRAN is far more

    future proof as it is mandated for use in Release 4 and Release 5 networks (All IP core).

    Reasons to deploy SIGTRAN

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    6/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 6

    Case Study: 3G ImpactToday the vast majority of SS7 traffic volume in a GSM mobile network is authentication and

    location update traffic (routed via STPs).

    UMTS authentication requires more signalling messages (of a larger size) due to the use of128 byte encryption keys.

    UMTS is mainly deployed in areas of high population and 3G coverage (though improving) can

    be limited resulting in large numbers of 3G-to-2G handovers.

    If dedicated 3G MSCs are deployed then a full location update (inc authentication) is required

    when handing over between 2G and 3G networks.

    If integrated 2G3G MSCs are deployed with similar coverage areas then 2G-3G inter-MSC

    handovers (resulting in a location update) can be reduced, however this typically leads to

    smaller MSC coverage areas which will lead to more 2G-2G 3G-3G Inter-MSC handovers and

    therefore more location updates.

    The increase in location updates creates major signalling link capacity issues at both the MSC

    and HLR leading to the need to deploy multiple signalling link-sets or high speed signalling

    links such as SIGTRAN

    Measurements taken inside a big European PLMN show that a 3G subscriber requires

    between 6 to 12 times more of SS7 bandwidth compared to a 2G subscriber.

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    7/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 7

    Case Study: Release 4 Networks

    SG

    MSSMSS

    MGWMGW

    HLR

    STP

    IN

    Services

    HLR

    SMC

    M3ua

    M3ua

    M3ua

    M3ua

    M3ua

    TDM

    TDM

    TDM

    VoIP

    In a Release 4 network both voice and signalling is designed to be delivered over an IP core network.

    SIGTRAN M3UA has been adopted by switch vendors to carry signalling traffic between elements

    (MSS-MGW, MSS-MSS, and MSS-STP).

    The larger VLR sizes deployed by Release 4 MSS vendors (1-2 million subscribers) also creates issues

    of signalling link capacity, which again necessitates the deployment of SIGTRAN.

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    8/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 8

    ATM Low speed link M2PA ATM Low speed link M3UA ATM Low speed link

    Average MSU size

    (MTP 2 + MTP 3)

    Number ATM

    Cells

    Eagle ATM link

    Msu/Sec

    # 64K links ATM

    equivalent

    Eagle M2PA

    Msu/Sec

    # ATM links

    Equivalent

    # 64K links IP

    equivalent

    Eagle M3PA

    Msu/Sec

    # ATM links

    Equivalent

    # 64K links IP

    equivalent

    20 1 2000 5 2000 1 5 2000 1 5

    30 1 2000 8 2000 1 8 2000 1 8

    40 2 1800 9 2000 2 10 2000 2 10

    50 2 1800 12 2000 2 13 2000 2 13

    60 2 1800 14 2000 2 15 2000 2 15

    70 2 1800 16 2000 2 18 2000 2 18

    80 2 1800 18 2000 2 20 2000 2 20

    90 3 1200 14 2000 2 23 2000 2 23

    100 3 1200 15 2000 2 25 2000 2 25

    110 3 1200 17 2000 2 28 2000 2 28

    120 3 1200 18 2000 2 30 2000 2 30

    130 3 1200 20 2000 2 33 1700 2 28

    140 4 900 16 2000 3 35 1700 2 30

    150 4 900 17 2000 3 38 1700 2 32

    160 4 900 18 2000 3 40 1700 2 34

    170 4 900 20 2000 3 43 1600 2 34

    180 4 900 21 2000 3 45 1600 2 36

    190 5 720 18 2000 3 48 1600 3 38

    200 5 720 18 2000 3 50 1600 3 40

    210 5 720 19 2000 3 53 1500 3 40

    220 5 720 20 2000 3 55 1500 3 42

    230 5 720 21 2000 3 58 1500 3 44240 6 600 18 2000 4 60 1500 3 45

    250 6 600 19 2000 4 63 1400 3 44

    260 6 600 20 2000 4 65 1400 3 46

    270 6 600 21 2000 4 68 1400 3 48

    ATM Conversion rationale

    LSL ATM Most Wireline carriers Most Wireline carriers

    MTP 3 MTP3 Most Wireless carriers (GSM high range, IS-41 low range) Most Wireless carriers (GSM high r

    MTP2 (3 bytes) removed ATM Layer (12 bytes every msu)

    by ATM ATM header (5 bytes every packet) All throughput for IP assumes all engineering guidelines A ll throughput for IP assumes all engineering guide

    are met (except octet sizes >120 for M3UA) are met (except octet sizes >120 for

    SIGTRAN / ATM / TDM

    Link Capacity Comparison

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    9/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 9

    What is SIGTRAN?

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    10/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 10

    SIGTRAN Protocol Architecture

    Application Protocol

    An adaptation module, that supports the lower

    layer primitive interface required by a signalling

    application protocol.(M2PA, M3UA, SUA etc)

    A common signalling transport protocol that

    supports a common set of reliable transport

    functions (SCTP)

    Standard IP.IP Transport

    Common Signalling

    Transport

    Adaptation module

    Application Protocol

    SIGTRAN

    (RFC 2719)

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    11/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 11

    SCTP

    SUAM3UA

    M2PA

    IP

    MTP2

    MTP1

    MTP3

    TDM SIGTRAN

    Protocol Stacks

    SCCP

    TCAP

    Application

    MAP/ CAP/ INAP

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    12/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 12

    SCTP

    M3UAM2PA

    IP

    MTP2

    MTP1

    MTP3

    TDM SIGTRAN

    ISUP

    BICC

    Protocol Stacks (Circuit Related)

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    13/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 13

    SCTP : Stream Control Transport Protocol

    Provides reliable delivery of messages over a packet switched network, much likeTCP but has several advantages in the telecommunications environment.

    RFC 2960, October 2000

    RFC 3309 Checksum Change, September 2002

    M2PA : MTP2 Peer-to-Peer Adaptation Layer

    Supports the transport of SS7 MTP3 signalling messages over IP, using theservices of the SCTP.

    Primarily used for point to point Trunk applications such as STP C-Links wherehigh capacity or link aggregation is required.

    No change to signalling network architecture / topology; just bigger pipes (Similarin principle to 2meg HS TDM links).

    Retains strong SS7 resilience due to simple implementation and because theMTP3 layer remains unchanged.

    M2PA has sequence numbers to support link change-over/ change-back, thuspreventing message loss.

    RFC 4165, September 2005

    Protocol Definitions

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    14/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 14

    STP

    SGWSTP

    SGWSignalling

    Element

    Signalling

    Element

    SCTPIP

    M2PA

    MTP3

    MTP1

    MTP2 MTP2

    MTP1

    SCCP

    TCAP

    MAP/ CAP/ INAP

    IP TDMTDM

    C-Link

    M2PA: End to End message flow

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    15/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 15

    Protocol Definitions

    M3UA : MTP3 User Adaptation Layer

    Allows for the Transport of MTP3 user parts (ISUP/ SCCP and above) over IP

    using the services of the SCTP. Designed to provide IP signalling capabilities to signalling end points in a

    distributed architecture.

    Adopted by switch vendors for Release 4 connectivity between MSS-MGW, MSS-MSS and MSS-STP.

    Although M3UA replaces MTP3 it retains some MTP3 features and serviceshelping it to maintain some of the traditional Telco resilience.

    RFC 3332, September 2002

    SUA : SCCP User Adaptation Layer

    Allows for the Transport of SCCP user parts (TCAP + Applications) over IP usingthe services of SCTP.

    Designed For Use Between a Signaling Gateway and an IP Resident Database.

    Looses some of the traditional SS7 resilience (that is provided by MTP3 layer) and

    is therefore perhaps more suited to a database / server environment. RFC 3868, October 2004

    Other Protocols:

    M2UA: MTP2 User Adaptation layer

    TUA: TCAP user adaptation layer

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    16/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 16

    STP

    SGWSignalling

    Element

    Signalling

    Element

    SCTPIP

    M3UAMTP3

    MTP1

    MTP2

    SCCP

    TCAP

    MAP/ CAP/ INAP

    IPTDM

    M3UA: End to End message flow

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    17/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 17

    STP

    SGWSignalling

    Element

    Signalling

    Element

    SCTPIP

    SUAMTP3

    MTP1

    MTP2

    SCCP

    TCAP

    MAP/ CAP/ INAP

    IPTDM

    SUA: End to End message flow

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    18/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 18

    MAP

    SCCP

    TCAP

    MTP3

    MTP2

    MAP

    SCCP

    TCAP

    MTP3

    M2PA

    SCTP

    IP

    MAP

    SCCP

    TCAP

    M3UA

    MAP

    SUA

    TCAP

    29 Octets

    4 Octets

    7 Octets16 Octets

    32 Octets

    20 Octets

    4 Octets

    29 Octets29 Octets

    24 Octets

    SCTP

    IP

    32 Octets

    20 Octets

    SCTP

    IP

    32 Octets

    20 Octets

    100 Octets

    SIGTRAN overhead (for a 150 byte message)

    M2PA = 145%.SS7

    M3UA = 149%.SS7

    SUA = 180%.SS7

    Message Sizes

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    19/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 19

    M2PA Case Study

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    20/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 20

    Signalling Network

    The Orange UK network consists of:

    4 IP enabled Tekelec Eagle STPs performing centralised Global Title analysis.

    40 Tekelec Eagle IP Conversion Platforms converting TDM to IP (MTP Routing only)

    2 Tekelec Eagle Interconnect Gateways performing GT Analysis, Map screening and MTP

    routing of ISUP messages.

    Approximately 5200+ Low Speed 64k signalling links

    352 IP links: Recently migrated from TALI-SAAL protocol to SIGTRAN M2PA.

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    21/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 21

    TEKELEC ISTP

    TEKELEC ISTP

    TEKELEC ISTP

    TEKELEC ISTP

    TekelecSignalling Gateway

    TekelecSignalling Gateway

    MSC

    T Mobile

    o2

    Vodafone

    TransitSwitch

    BT

    SCCP

    Interconnect

    Roamware

    IUP + ISUP

    Messages

    Sccp GT Messages

    Sccp & IUP / ISUP

    Messages

    VoiceInterconnect

    FT

    Interconnect

    VGW

    TekelecICP

    TekelecICP

    SGSN

    SLR

    SMC

    HLR

    PCF

    ISCP

    SB

    VPS

    PTT

    Server

    GGSN3G

    MSC

    Network Topology (2H 2006)

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    22/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 22

    ICP1Site 1

    364 C7

    LS linksICP2

    ICP1Site 2

    230 C7

    LS linksICP2

    ICP1Site 3

    168 C7

    LS linksICP2

    ICP1Site 4

    340 C7

    LS linksICP2

    ICP1Site 5

    416 C7

    LS linksICP2

    ICP1Site 6

    348 C7

    LS linksICP2

    ICP1 Site 7228 C7

    LS linksICP2

    ICP1Site 8

    368 C7

    LS linksICP2

    ICP1Site 9

    200 C7

    LS linksICP2

    ICP1Site 14

    136 C7

    LS links

    ICP2

    ICP1Site 13

    320 C7

    LS links

    ICP2

    ICP1Site 12

    212 C7

    LS links

    ICP2

    ICP1Site 11

    284 C7

    LS links

    ICP2

    ICP1Site 10

    184 C7

    LS links

    ICP2

    ICP1Site 20

    124 C7

    LS linksICP2

    ICP1Site 15

    264 C7

    LS links

    ICP2

    ICP1Site 16

    196 C7

    LS linksICP2

    ICP1Site 17

    64 C7

    LS linksICP2

    ICP1Site 19

    132 C7

    LS linksICP2

    ICP1 Site 1880 C7

    LS linksICP2

    IGW IGW

    Physical Network Architecture

    STP STP

    STP STP

    352 IP links

    229 C7

    LS links

    229 C7

    LS links

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    23/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 23

    TALI -> M2PA

    TCP -> SCTP

    IP

    ISTPIP Enabled

    SIGNALLING TRANSFER POINT

    ICPICP

    IP CONVERSION PLATFORM(Signalling Gateway)

    MSC HLR

    MTP3

    SCCP

    TCAP

    MAP

    INAP

    CAMEL

    ISUP

    MTP2

    MTP1

    MTP3

    SCCP

    TCAP

    MAP

    INAP

    CAMEL

    ISUP

    MTP2

    MTP1

    MTP3

    SCCP

    TCAP

    MAP

    INAP

    CAMEL

    ISUP

    IP CONVERSION PLATFORM(Signalling Gateway)

    IP IPTDM TDM

    End to End Message Flow

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    24/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 24

    Traffic + SLS Loadsharing

    Tekelec

    ISTP2

    Tekelec

    ICP1

    Site A

    Tekelec

    ICP2

    Site A

    Tekelec

    ISTP

    3

    Tekelec

    ISTP

    4

    Tekelec

    ISTP

    1

    Tekelec

    ICP1

    Site B

    Tekelec

    ICP2

    Site B

    RX only

    TX + RX Site A

    TX + RX Site B

    Transmits messages

    to:

    ISTP1 & ISTP3

    Transmits messages

    to:ISTP2 & ISTP4

    Transmits messages

    to:

    ISTP3 & ISTP2

    Transmits messages

    to:

    ISTP4 & ISTP1

    Rules enable:

    Each ISTP to take 25% of network traffic

    Each STP to receive all SLS values 0-15

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    25/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 25

    ISTP GTT Utilisation and FailoverNormal Working Conditions:

    Each ISTP takes 25% of network traffic

    Each ISTP can run up to 56% of its total GTT/DSM capacity

    56% of 40 800 GTT/SEC = 22 848 GTT/SEC

    STP Failover Rules:

    Failure to ISTP1ISTP1 Traffic spread equally across ISTPs 3&4

    Failure to ISTP2ISTP2 Traffic spread equally across ISTPs 3&4

    Failure to ISTP3ISTP3 Traffic spread equally across ISTPs 1&2

    Failure to ISTP4ISTP4 Traffic spread equally across ISTPs 1&2

    Example: % network traffic under failure of ISTP1

    ISTP 2 Carries 25% of network traffic

    ISTP 3 Carries 37.5% of network traffic

    ISTP 4 Carries 37.5% of network traffic

    Example: % GTT utilisation under failure of ISTP1

    ISTP 2 Runs at 56% of total GTT/ DSM capacity (22 848 GTT/SEC)

    ISTP 3 Runs at 84% (56% + 28%) of total GTT/ DSM capacity (34 272 GTT/SEC)

    ISTP 4 Runs at 84% (56% + 28%) of total GTT/ DSM capacity (34 272 GTT/SEC)

    Each ISTP currently runs at approx 37.5% utilisation at busy hour (Total network GTT/SEC = 60 000)

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    26/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 26

    ISTP: Hardware Configuration

    Rack 2

    D

    S

    M

    D

    S

    M

    D

    S

    M

    C C D D

    S

    T

    C

    D

    S

    M

    D

    S

    M

    D

    S

    M

    C C D D

    S

    T

    C

    D

    S

    M

    D

    S

    M

    D

    S

    M

    E ES

    G

    W

    S

    T

    C

    D

    S

    M

    D

    S

    M

    D

    S

    M

    D

    S

    M

    D

    S

    M

    Rack 3

    D

    S

    M

    D

    S

    M

    D

    S

    M

    E E

    S

    T

    C

    S

    G

    W

    Control

    Cards

    D

    S

    M

    D

    S

    M

    D

    S

    M

    Rack 1

    D

    S

    M

    D

    S

    M

    A A B B

    S

    T

    C

    D

    S

    M

    D

    S

    M

    D

    S

    M

    A A B B

    S

    T

    C

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    27/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 27

    EDCM: ISTP IP Link Configurations

    EDCM 1

    EDCM 2

    EDCM 3

    EDCM 4

    TekelecISTP

    2

    EDCM 3

    EDCM 4

    TekelecICP1

    Site A

    EDCM 1

    EDCM 2

    EDCM 3

    EDCM 4

    TekelecICP2

    Site A

    EDCM 1

    EDCM 2

    EDCM 1

    EDCM 2

    EDCM 3

    EDCM 4

    TekelecISTP

    3

    EDCM 1

    EDCM 2

    EDCM 3

    EDCM 4

    TekelecISTP4

    EDCM 1

    EDCM 2

    EDCM 3

    EDCM 4

    TekelecISTP1

    EDCM 3

    EDCM 4

    TekelecICP1

    Site B

    EDCM 1

    EDCM 2

    EDCM 3

    EDCM 4

    TekelecICP2

    Site B

    EDCM 1

    EDCM 2

    RX only

    TX + RX Site A

    TX + RX Site B

    Note_ Each ISTP EDCM card only receives traffic from a limited number of IP links

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    28/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 28

    ISTP: EDCM Utilisation (RX)

    S C

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    29/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 29

    ISTP: EDCM Utilisation (TX)

    S it h Sit IP Li k C ti it

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    30/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 30

    EDCM 1

    EDCM 2

    EDCM 3

    EDCM 4

    Tekelec

    ISTP

    2

    EDCM 3

    EDCM 4

    Tekelec

    ICP

    1

    EDCM 1

    EDCM 2

    EDCM 3

    EDCM 4

    Tekelec

    ICP

    2

    EDCM 1

    EDCM 2

    EDCM 1

    EDCM 2

    EDCM 3

    EDCM 4

    Tekelec

    ISTP

    3

    EDCM 1

    EDCM 2

    EDCM 3

    EDCM 4

    Tekelec

    ISTP

    4

    EDCM 1

    EDCM 2

    EDCM 3

    EDCM 4

    TekelecISTP

    1

    Switch Site: IP Link Connectivity

    IP N t k Ph i l ti it

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    31/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 31

    PE

    PE E

    ECR

    PE

    PEE

    E

    CR CR

    CRCR

    CREDCM

    1

    EDCM

    2

    EDCM

    3

    EDCM

    4

    Tekelec

    STP

    EDCM

    1

    EDCM

    2

    EDCM

    1

    EDCM

    2

    Tekelec

    ICP 1

    Tekelec

    ICP 2

    Site ASite B

    MPLS

    Core

    IP Network: Physical connectivity

    IP N t k L i l L (MPLS)

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    32/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 32

    CRPE

    PEE

    E

    CR

    CR

    CRCR

    CR

    MPLS Core

    PE

    PE E

    E

    SDH Network

    EDCM 1

    EDCM 2

    EDCM 3

    EDCM 4

    Tekelec

    STP

    EDCM 1

    EDCM 2

    EDCM 1

    EDCM 2

    Tekelec

    ICP 1

    Tekelec

    ICP 2

    M2PA Signalling Link

    M2PA Signalling Link

    M2PA Signalling Link

    M2PA Signalling Link

    Layer 2

    IP Network: Logical Layers (MPLS)

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    33/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 33

    IP Network

    Requirements

    R d T i Ti

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    34/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 34

    Window Size = 16384Average MSU size = 150 Octets

    Max Through-Put (MSUs/sec for 1 socket) = Window Size (in MSUs) / RTT

    Window Size in MSUs = Window Size / MSU Size

    = 16384 / 150

    Window size in MSUs = 110 MSU/SEC

    RTT (ms) Window Size required (in MSUs)

    150 38 75 113 150 188 225 263 300 338 375 413 450

    135 34 68 101 135 169 203 236 270 304 338 371 405

    120 30 60 90 120 150 180 210 240 270 300 330 360

    105 26 53 79 105 131 158 184 210 236 263 289 315

    90 23 45 68 90 113 135 158 180 203 225 248 270

    75 19 38 56 75 94 113 131 150 169 188 206 225

    60 15 30 45 60 75 90 105 120 135 150 165 180

    45 11 23 34 45 56 68 79 90 101 113 124 135

    30 8 15 23 30 38 45 53 60 68 75 83 90

    15 4 8 11 15 19 23 26 30 34 38 41 45

    250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000

    Max Through-Put (MSUs/Sec)

    Round Trip Times

    R d T i Ti

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    35/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 35

    Round Trip Times

    RTT Max Through-Put Actual Through-Put

    20 5500 2000

    30 3666 2000

    40 2750 2000

    50 2200 2000

    60 1833 1833

    70 1571 1571

    80 1375 1375

    90 1222 1222

    100 1100 1100

    110 1000 1000

    120 916 916

    130 846 846

    140 785 785

    150 733 733

    ISTP Card Socket name Average

    RTT

    Leeds 1203 K64s1 13

    K77s1 17

    K60s1 10

    K73s1 7

    K59s1 16

    K91s1 21

    1205 K64s2 7

    K77s2 13

    K60s2 9

    K73s2 12

    K59s2 10

    K91s2 17

    2103 K52s1 17

    K71s1 5

    K86s1 17

    K89s1 16

    2105 K52s2 18

    K71s2 5

    K86s2 5

    K89s2 13

    IP network requirements

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    36/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 36

    Round Trip Time

    RTT should be below 70ms

    Packet Loss

    Packet loss less than 0.1%

    Bandwidth

    Sufficient bandwidth must be available on both the LAN and WAN to cater for

    normal working conditions as well as failure / re-route scenarios.

    Congestion

    There should be no congestion in the network.

    Need to ensure sufficient available bandwidth and high traffic priority (QOS).

    JitterJitter should be low / minimal

    M2PA T7 Timer

    IP network rerouting must be faster than Q703 T7 timer (0.5-2 seconds) in order

    to be seamless.

    IP network requirements

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    37/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 37

    IP Network

    Configuration

    LAN

    LAN Requirements: Physical

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    38/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 38

    WAN

    LAN Requirements: Physical

    Ethernet Switch

    Separate Ethernet switches are recommended for network resilience.

    Logical networks can be combined on a single Ethernet Switch however this creates a single point of failure.

    Router

    Separate Routers are recommended for network resilience.

    Logical networks can be combined on a single Router however this creates a single point of failure.

    Ethernet

    Switch 2

    Ethernet

    Switch 1 Router 1

    Router 2

    Signalling

    Node

    Ethernet

    Port 1

    Ethernet

    Port 2

    100-t Ethernet

    Full Duplex

    GIGE Ethernet

    Full Duplex

    LAN Requirements: Logical

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    39/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 39

    The local network should ideally be deployed using 2 separate IP networks / subnets.

    IP subnets should be deployed in separate VLANs (Virtual Local Area Networks) for protection from other LAN traffic

    Subnet sizing

    IP subnets should be large enough to allow for future capacity expansion.

    Larger signalling subnets could be deployed per site to include other forms of signalling traffic, for example H248 and SIP.

    This makes future network planning simpler and allows for more efficient use of IP address space.

    Note_ It is not always possible to separate H248, SIP and SIGTRAN traffic on some equipment due to a limited availability of

    Ethernet ports.

    If all signalling traffic requires the same QOS and is trusted then traffic may share the same VPN (Virtual Private Network)

    on the WAN.

    Signalling

    Node

    IP Address 1Subnet 1

    IP Address 2

    Subnet 2 Ethernet

    Switch 2

    Ethernet

    Switch 1Router 1

    Router 2VLAN 2

    VLAN 1

    Network 2

    Default Gateway 2

    Network 1

    Default Gateway 1

    LAN Requirements: Logical

    LAN Requirements: Resilience

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    40/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 40

    If multi-homing is used there should be no requirement for VRRP (Virtual Redundant Router Protocol) to be used. This is

    because multi-homing will provide network resilience.

    Multi-homing allows the end point to re-route traffic over an alternative path during a network failure; rather than relying on

    the IP network to re-route traffic. This can enable faster re-route times as you do not need to wait for the IP network to

    reconfigure / re-converge.

    Each subnet should be hosted on a different router to minimise the impact of a failure.

    VRRP can be configured with the Virtual IP address (Def Gateway) fixed to a particular router. This allows VRRP to be

    manually activated during maintenance windows.

    WAN

    LAN Requirements: Resilience

    Router 1 Router 2Network 2

    Default Gateway 2Network 1

    Default Gateway 1

    VRRP

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    41/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 41

    IP Network

    Configuration

    WAN (MPLS)

    Multi-Protocol Label Switching (MPLS)

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    42/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 42

    Ethernet

    Switch 2

    Ethernet

    Switch 1

    PE

    Router 1

    PE

    Router 2

    Signalling

    Node

    EthernetPort 1

    Ethernet

    Port 2

    Core

    Router

    Core

    Router

    Core

    Router

    Core

    Router

    MPLS Core

    MPLS is a layer 2 switching technology that provides high scalability, redundancy and fast re-route times.

    MPLS adds a small label (32 Bits) to incoming packets between the frame and packet headers.

    The label is then used to make all forwarding decisions regarding the packet (not the IP address).

    Label Switch Paths are used to route traffic through the MPLS core.

    PE (Provider Edge) router adds the label to the packet.

    Core Routers (Label Switch Routers) are deployed in the MPLS core to route traffic.

    Multi Protocol Label Switching (MPLS)

    Network Configuration

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    43/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 43

    Ethernet

    Switch 1Ethernet

    Switch 2

    PE

    Router 1

    PE

    Router 2

    Element

    Ethernet A

    IP address 1

    Subnet 1

    Ethernet B

    IP address 2

    Subnet 2

    100-T Ethernet

    Full Duplex

    GIGE EthernetFull Duplex

    Ethernet IP SCTPM2PA

    M3UAPayload

    MPLS

    labelPPP IP SCTP

    M2PA

    M3UAPayloadSDH

    Core

    Router

    Core

    Router

    Core

    RouterCore

    Router

    Core

    Router

    Core

    Router

    MPLS Core

    (SDH trunks)

    Subnet 1

    Default GWY1

    VLAN2

    Subnet2

    Separate VPN for Signalling

    VLAN1

    Subnet1

    Network Configuration

    Subnet 2

    Default GWY 2

    MPLS VPN

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    44/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 44

    Signalling traffic can be separated from other traffic types on the WAN and given priority (QOS) by using

    a dedicated VPN (Virtual Private Network).

    The VPN will also provide security from other un-trusted network traffic.

    Note_ Ideally a separate VPN should be created for signalling traffic from un-trusted sources.

    The signalling VPN should be configured as High Priority with Low Latency (RTT below 70ms) and

    Low Jitter.

    Fast re-route capabilities are essential if you are to ensure other resilience mechanisms do not activate

    (For example SCTP multi-homing and C7 timers etc).

    The signalling VPN can contain multiple signalling protocols SIGTRAN, H248 (MEGACO) and SIP (as

    they all share the same QOS characteristics) provided they are from trusted sources.

    QOS

    End elements do not need to add QOS markings to packets as the VPN will provide QOS.

    The VLAN can prioritise LAN traffic and can be mapped directly to the VPN.

    MPLS VPN

    End to End: Physical Network

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    45/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 45

    PE

    PE E

    ECR

    PE

    PEE

    E

    CR CR

    CRCR

    CREDCM

    1

    EDCM

    2

    EDCM

    3

    EDCM

    4

    Tekelec

    STP

    EDCM

    1

    EDCM

    2

    EDCM

    1

    EDCM

    2

    Tekelec

    ICP 1

    Tekelec

    ICP 2

    Site ASite B

    MPLS

    Core

    End to End: Physical Network

    Logical Layers

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    46/53

    Tekelec Confidential /For Discussion Purposes Only /

    Non-Binding

    06 | 46

    CRPE

    PEE

    E

    CR

    CR

    CRCR

    CR

    MPLS Core

    PE

    PE E

    E

    SDH Network

    EDCM 1

    EDCM 2

    EDCM 3

    EDCM 4

    Tekelec

    STP

    EDCM 1

    EDCM 2

    EDCM 1

    EDCM 2

    Tekelec

    ICP 1

    Tekelec

    ICP 2

    M2PA Signalling Link

    M2PA Signalling Link

    M2PA Signalling Link

    M2PA Signalling Link

    Layer 2

    Logical Layers

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    47/53

    Tekelec Confidential /For Discussion Purposes Only /Non-Binding

    06 | 47

    IP Network

    Configuration

    WAN (ATM)

    Asynchronous Transfer Mode (ATM)

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    48/53

    Tekelec Confidential /For Discussion Purposes Only /Non-Binding

    06 | 48

    Ethernet

    Switch1

    Ethernet

    Switch 1

    Router 1

    Router 2

    Signalling

    Node

    EthernetPort 1

    Ethernet

    Port 2

    ATM Core

    ATM

    Switch 1

    ATM

    Switch 2

    Asynchronous Transfer Mode (ATM)

    Ethernet ATM

    IP Routers are connected together via ATM PVCs (Permanent Virtual Circuits).

    Multiple PVCs may be required between routers in order to cater for different traffic types (QOS).

    Signalling should be carried over PVCs with high priority and traffic should not be queued.

    ATM is a Layer 2 technology.

    Messages are transmitted between routers using ATM PVCs and routing is done at the IP layer by the

    Router (Layer 3).

    Layer 3: Router Network

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    49/53

    Tekelec Confidential /For Discussion Purposes Only /Non-Binding

    06 | 49

    LDS-3

    LDS-4 LEC-4

    LEC-3

    RDG-4 ENF-4

    RDG-3 ENF-3

    BRS-2

    BRS-1

    BIR-2

    BIR-1

    LDS-2

    LDS-1

    MAN-2

    MAN-1

    TAN-2

    TAN-1

    LEC-2

    LEC-1

    ACT-2

    ACT-1

    DAR-2

    DAR-1

    ENF-1

    ENF-2

    CRO-2

    MCR-2

    MCR-1

    LVP-2

    LVP-1

    CDF-2

    CDF-1 RDG-1

    RDG-2

    CRO-1

    FAR-2

    FAR-1

    SUBNET B

    SUBNET A

    Layer 3: Router Network

    A complete layer 3 IP router network needs to be built to route the IP packets.

    Routers are connected together using ATM PVCs carried over the ATM WAN.

    PVCs can be prioritised for different types of traffic (QOS) on the ATM WAN.

    Routers can be fully meshed or partially meshed (using core routers) as shown above.

    It is important to ensure that the paths of the PVCs for the red router and green routers are diversely

    routed across the WAN to ensure diversity and avoid single points of failure.

    Layer 2: ATM network

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    50/53

    Tekelec Confidential /For Discussion Purposes Only /Non-Binding

    06 | 50

    BPX

    BSW1 BPX

    ENF1

    BPX

    MAN1

    BPX

    TAN2

    BPX

    LEE1

    BPX

    ACT1

    BPX

    REA1

    BPX

    CRO1

    BPX

    LEI 1

    BPX

    DNX1

    BPX

    FRM1

    BPX

    LIV1

    BPX

    MFD1

    BPX

    CAR1

    BPX

    BIR1

    BPX

    TAN 1

    BPX

    LEE2

    BPX

    MAN2

    BPX

    MFD2

    BPX

    LIV2

    BPX

    LEI 2

    BPX

    BIR2

    BPX

    CAR2

    BPX

    BSW2

    BPX

    FRM2

    BPX

    ENF2

    BPX

    ACT2

    BPX

    CRO2

    BPX

    REA2

    BPX

    STK1

    BPX

    STK2

    BPX

    GRN1

    BPX

    GRN2

    BPX

    YRK 2

    BPX

    YRK 1

    BPX

    DSW1

    BPX

    DAS1

    BPX

    DGL1

    34 Meg

    140 Meg SDH

    140 Meg SDH (Core)

    Layer 2: ATM network

    The ATM WAN consists of ATM switches (Cisco BPX) meshed together using SDH trunks.

    Again the ATM switches can be fully meshed or partially meshed (using core routers) as shown above.

    It is important to ensure that the paths of the SDH trunks are diversely routed across the SDH network in

    order to ensure diversity and avoid single points of failure.

    The SDH trunks should be symmetrical (same capacity) with enough spare capacity to allow for failover

    of PVCs onto a diverse path / trunk.

    Layer 2: ATM network

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    51/53

    Tekelec Confidential /For Discussion Purposes Only /Non-Binding

    06 | 51

    WTN

    WTN

    WTN

    B143610000Link33734

    NTL ANRG 001WAN

    REA-BPX2

    IMA (x2)

    B159257000Link38585

    BT MXPP300726

    WTN

    B157275000LinkNos. 40196BT MXPP900253

    B129537000LinkNos. 30381BT MXPP700196

    WTN

    B157334000Link39247

    BT MXPP800348

    STM-1

    B140842000Link32684

    NTL EDLE 026WAN

    STM-1

    IMA (x4)

    B140936000Link32687

    TWC TF30089

    B140803000Link33733

    NTL BORG 001

    IMA (x4)

    B149753000

    Link38586NTL LGTO039WAN

    B133968000Link23204

    NTL LDDN 001WAN

    B140857000Link33922

    BT MXPP800320

    B143558000Link32685

    NTL EDAN 010WAN

    B140937000Link32686

    NTL COAN 007WAN

    B160087000Link32683

    NTL LDLE 016WAN

    B140864000Link32682

    NTL LESH 084WAN

    B133965000Link23205

    TWC TH30017

    B148183000Link33921

    MXPP 800319

    B140487000Link33919

    NTL SCHA 001WANB148178000Link32651

    NTL SHBO 074WAN

    B133963000Link23203

    NTL LGBO001WAN

    B160095000Link23201

    NTL LGLD 018WAN

    B143548000Link32538

    NTL EDLD 016WAN B134245000Link35303

    BT MXUK340113

    B134246000Link32539

    NTL LDTS001CAL631B140474000Link36281

    BT MXPP 800321

    B144118000Link33920

    MXPP800318

    TAN-BPX2

    TAN-BPX1

    LIV-

    BPX1

    LIV-BPX2

    DAS-BPX1

    DNX-

    BPX1

    LEE-BPX1

    LEE-BPX2

    PET-BPX1

    PET-BPX2

    TYN-

    BPX1

    PLY-BPX1

    CAR-BPX2

    CAR-BPX1

    HER-BPX1

    3.11.2

    3.13.1

    3.2

    1.3

    3.2

    3.23.3

    3.2

    3.4 3.2

    3.1

    3.2

    3.1

    PLY-MGX

    3.3

    3.3

    3.43.2

    3.1

    1.3

    3.1

    3.2

    3.4

    3.3

    3.3

    3.1

    3.3

    3.2

    3.33.3

    WTN

    3.8

    3.8

    DSW-BPX1

    1.4

    1.4

    1.31.3

    STM-1

    3.8

    3.8

    1.2

    1.23.8 3.8

    ENF-BPX1

    ENF-BPX2

    3.1

    3.2

    3.3

    3.4

    3.2

    1.2

    1.2

    1.41.4

    1.3

    FRM-

    BPX1

    FRM-BPX2

    1.2

    1.4

    1.4

    1.3

    ACT-BPX1

    1.2 3.2

    3.1

    CRO-BPX1

    CRO-BPX2

    3.1

    3.3 3.83.8

    LEI-BPX2

    LEI-

    BPX13.2

    1.2

    3.1

    3.2

    3.1

    1.2

    1.4

    1.4

    MAN-

    BPX1

    MAN-

    BPX23.1

    1.3

    3.3

    1.3

    1.2

    1.4

    3.1

    3.2

    3.5

    1.4

    BIR-BPX2

    3.4

    3.1

    3.2

    3.2

    1.2

    BSW-

    BPX2

    1.33.2

    3.41.2

    1.4

    WTN

    01/02/2002

    WTN

    1.3

    IMA (x2)SOL-BPX1

    3.2 3.3

    IMA (x2)

    BAN-

    BPX13.3

    3.2

    BPG-

    BPX1

    1.4

    BIR-

    BPX1

    1.41.4

    1.4

    MFD-BPX2

    MFD-BPX1

    1.4

    1.4

    1.3

    1.3STK-BPX21.3

    1.3

    1.3

    1.3

    WTN

    WTN

    1.4

    STK-BPX1

    1.3

    1.4

    BSW-BPX1

    3.1

    1.2

    REA-

    BPX1

    1.43.1

    1.21.4

    ACT-

    BPX2

    3.1

    1.3

    1.2

    1.41.4

    WTN

    1.4 3.2

    1.2

    1.2

    WTN

    1.2

    1.23.1

    GRN-BPX1

    GRN-BPX2

    1.4 1.4

    WTN

    WTN

    5.1

    1.2 1.2

    1.3

    WTN

    WTN

    WTN

    1.2

    5.1

    WTN67833

    1.2

    Layer 2: ATM network

    How not to do it!

    A WAN that has evolved rather than been designed.

    Varying sizes of trunks making the re-route of PVCs non guaranteed

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    52/53

  • 7/31/2019 6828830 SIGTRAN Presentation Template 3Reliance22 Feb07

    53/53

    06 | 53

    Thank you