44ª rapv reuniÃo anual de pavimentaÇÃo e 18º...

18
44ª RAPv REUNIÃO ANUAL DE PAVIMENTAÇÃO E 18º ENACOR ENCONTRO NACIONAL DE CONSERVAÇÃO RODOVIÁRIA ISSN 1807-5568 RAPv Foz do Iguaçu, PR de 18 a 21 de Agosto de 2015 CONTRIBUIÇÃO AO ESTUDO DE FATORES DE EQUIVALÊNCIA DE CARGA PARA CAMINHÕES FORA DE ESTRADA Marcela Luiza Pelegrini Guimarães 1 ; Taciano Oliveira da Silva 2 ; Carlos Alexandre Braz de Carvalho 3 ; Natalia Assunção Brasil Silva 4 ; Giovani Levi Sant’Anna 5 ; Guilherme Avelino Venturim 6 RESUMO Neste trabalho de pesquisa, realizou-se uma análise do Fator de Equivalência de Carga (FEC) para caminhões fora de estrada em estradas de minas, propondo novo limite para o eixo simples de rodas duplas até 151,42 toneladas por eixo. Para o desenvolvimento desta análise, foram relacionados os danos das cargas dos eixos com o dano causado pela carga do eixo simples de rodas duplas padrão de 8,2toneladas. A razão entre os danos (deflexões recuperáveis no topo do subleito) foi elevada ao expoente de 5,959, proposto por Pereira (1992),encontrando-se, assim, valores de FECs para as cargas analisadas. Na análise das determinações dos FECs, confirmou-se, via resultados das variações de carregamentos de eixos entre 6,0 e 151,42 toneladas, pressões de enchimento dos pneus de 80 psi, 100 psi e 120 psi, e cinco estruturas de pavimentos diferentes, que os valores encontrados de FEC não sofreram grandes variações com os diversos 1 Engenheira Civil. Universidade Federal de Viçosa, Departamento de Engenharia Civil. Universidade Federal de Viçosa (UFV). Av. P.H. Rolfs s/n, Campus Universitário, CEP-36570-000. Viçosa-MG. E-mail: [email protected] 2 Professor Adjunto. Departamento de Engenharia Civil, Universidade Federal de Viçosa (UFV). Av. P.H. Rolfs s/n, Campus Universitário, CEP-36570-000. Viçosa-MG. E-mail: [email protected] 3 Professor Associado. Departamento de Engenharia Civil, Universidade Federal de Viçosa (UFV). Av. P.H. Rolfs s/n, Campus Universitário, CEP-36570-000. Viçosa-MG. E-mail: [email protected] 4 Mestranda em Engenharia Civil. Universidade Federal de Viçosa (UFV), Departamento de Engenharia Civil, Universidade Federal de Viçosa (UFV), Av. P. H. Rolfs, s/n, Campus Universitário. CEP: 36570-000. Viçosa-MG. Email: [email protected] 5 Pós-doutor em Engenharia. Departamento de Engenharia Florestal. Universidade Federal de Viçosa (UFV). Av. P.H. Rolfs s/n, Campus Universitário, CEP-36570-000. Viçosa-MG. E-mail: [email protected] 6 Graduando em Engenharia Civil. Departamento de Engenharia Civil. Universidade Federal de Viçosa (UFV). Av. P.H. Rolfs s/n, Campus Universitário, CEP-36570-000. Viçosa-MG. E-mail: [email protected]

Upload: phungkhue

Post on 04-Dec-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

44ª RAPv – REUNIÃO ANUAL DE PAVIMENTAÇÃO

E

18º ENACOR – ENCONTRO NACIONAL DE CONSERVAÇÃO

RODOVIÁRIA ISSN 1807-5568 RAPv

Foz do Iguaçu, PR – de 18 a 21 de Agosto de 2015

CONTRIBUIÇÃO AO ESTUDO DE FATORES DE EQUIVALÊNCIA DE

CARGA PARA CAMINHÕES FORA DE ESTRADA

Marcela Luiza Pelegrini Guimarães1; Taciano Oliveira da Silva

2; Carlos Alexandre Braz de

Carvalho3; Natalia Assunção Brasil Silva

4; Giovani Levi Sant’Anna

5; Guilherme Avelino

Venturim6

RESUMO

Neste trabalho de pesquisa, realizou-se uma análise do Fator de Equivalência de Carga (FEC) para caminhões fora de

estrada em estradas de minas, propondo novo limite para o eixo simples de rodas duplas até 151,42 toneladas por eixo.

Para o desenvolvimento desta análise, foram relacionados os danos das cargas dos eixos com o dano causado pela carga

do eixo simples de rodas duplas padrão de 8,2toneladas. A razão entre os danos (deflexões recuperáveis no topo do

subleito) foi elevada ao expoente de 5,959, proposto por Pereira (1992),encontrando-se, assim, valores de FECs para as

cargas analisadas. Na análise das determinações dos FECs, confirmou-se, via resultados das variações de carregamentos

de eixos entre 6,0 e 151,42 toneladas, pressões de enchimento dos pneus de 80 psi, 100 psi e 120 psi, e cinco estruturas

de pavimentos diferentes, que os valores encontrados de FEC não sofreram grandes variações com os diversos

1 Engenheira Civil. Universidade Federal de Viçosa, Departamento de Engenharia Civil. Universidade Federal de

Viçosa (UFV). Av. P.H. Rolfs s/n, Campus Universitário, CEP-36570-000. Viçosa-MG. E-mail:

[email protected]

2Professor Adjunto. Departamento de Engenharia Civil, Universidade Federal de Viçosa (UFV). Av. P.H. Rolfs s/n,

Campus Universitário, CEP-36570-000. Viçosa-MG. E-mail: [email protected]

3Professor Associado. Departamento de Engenharia Civil, Universidade Federal de Viçosa (UFV). Av. P.H. Rolfs s/n,

Campus Universitário, CEP-36570-000. Viçosa-MG. E-mail: [email protected]

4Mestranda em Engenharia Civil. Universidade Federal de Viçosa (UFV), Departamento de Engenharia Civil,

Universidade Federal de Viçosa (UFV), Av. P. H. Rolfs, s/n, Campus Universitário. CEP: 36570-000. Viçosa-MG.

Email: [email protected] 5 Pós-doutor em Engenharia. Departamento de Engenharia Florestal. Universidade Federal de Viçosa (UFV). Av. P.H.

Rolfs s/n, Campus Universitário, CEP-36570-000. Viçosa-MG. E-mail: [email protected]

6Graduando em Engenharia Civil. Departamento de Engenharia Civil. Universidade Federal de Viçosa (UFV). Av. P.H.

Rolfs s/n, Campus Universitário, CEP-36570-000. Viçosa-MG. E-mail: [email protected]

parâmetros adotados. Este se manteve estável mesmo nas estruturas de pavimento com baixa capacidade de suporte,

bem como nas estruturas mais robustas de pavimentos e com alta capacidade de suporte de carregamento por eixo. Os

fatores encontrados foram comparados com os propostos pelo DNIT (2006), visando à validação dos resultados, sendo

obtido, através de análise estatística, coeficiente de determinação de 0,99. Entende-se que com esta contribuição, os

pavimentos flexíveis solicitados por caminhões fora de estrada poderão ser dimensionados pelo uso do método de

dimensionamento de pavimentos flexíveis do DNIT (2006), sem a necessidade de extrapolação das curvas dos FECs.

PALAVRAS-CHAVES: Fator de Equivalência de Carga; Caminhões fora de estrada; Dimensionamento de estradas de

minas.

ABSTRACT

This work addresses the equivalent load factor (LEF) for off-road trucks, proposing a new curve of LEF for single axles

of twin wheels covering trucks up to 151.42 tons per axle. For development of this curve, was related damage the loads

of the axes with the damage caused by the load of the standard axis. This ratio was raised to the exponent of 5,959

proposed by Pereira (1992), finding thus LEF for certain loads. The analysis of the determination of the LEF, on the

basis of recoverable deflection at the top of the subgrade, it was confirmed, through results of axle loads variations

between 6.0 and 151.42 tons, filling pressure of 80 psi tires 100 psi and 120 psi and five different pavement structures,

which do not suffer large variations LEF with various parameters adopted. This remained stable even in pavement

structures analyzed with low carrying capacity, as well as the structures of pavements robust and high capacity load axle

support. The factors were compared with those proposed by DNIT (2006) at the discretion of validation of the results,

obtained with a coefficient of determination 0.99, which proves the flexibility of application of results. It is understood

that this input requested by the flexible pavements Off-Road Trucks can be designed by using the design method for

flexible pavements DNIT (2006) without extrapolation of the curve LEF.

KEYWORDS: Load Equivalency Factor; off-road trucks; Mine roads design.

INTRODUÇÃO

O método de dimensionamento de pavimentos segundo o DNIT (2006) leva em conta o número de

passadas de diferentes eixos, carregados com cargas distintas, equivalente ao número de passadas

do eixo padrão de 8,2 toneladas. Isto foi feito relacionando o dano resultante do eixo de uma carga

qualquer com o determinado como padrão (8,2 toneladas), no topo do subleito. Com este

procedimento, foi criado um ábaco relacionando carga por eixo x fator de equivalência de carga que

contém carga por eixo de até 20 toneladas para eixos simples e 30 toneladas para eixos em tandem

duplo e triplo, não podendo ser utilizado para cargas superiores a estas.

Cabe destacar que atualmente existem programas computacionais que possibilitam dimensionar

pavimentos por meio de métodos mecanicistas que não necessitam de informações de fatores de

equivalência de cargas para dimensionamento das camadas estruturais de pavimentos.

Resumidamente, esses programas necessitam de informações, como por exemplo: dados do tráfego,

módulo de resiliência e coeficiente de Poisson das camadas do pavimento e do subleito, vida de

fadiga do revestimento asfáltico e modelos de previsão de acúmulo de deformação permanente

previstos para o pavimento.

Para o dimensionamento das estradas de minas, segundo a metodologia do DNIT (2006),com o

propósito de converter as solicitações dos caminhões de mineração para o eixo padrão de 8,2t é

necessária à complementação da curva do ábaco carga por eixo x fator de equivalência de carga

para eixo simples, que contemple eixos com cargas muito superiores às apresentadas no referido

ábaco.

O objetivo geral deste trabalho foi investigar o Fator de Equivalência de Carga (FEC) para

caminhões fora de estrada para aplicação do método de dimensionamento de pavimentos flexíveis

segundo o DNIT (2006). Utilizou-se o programa computacional Elsym5 para simular diferentes

carregamentos em estruturas variadas de pavimentos flexíveis, analisando as deflexões encontradas

no topo do subleito, e também o expoente utilizado por Silva (2009) para encontrar uma relação

entre as cargas por eixo e o fator de equivalência de carga a elas correspondente.

Objetivos específicos: executar simulações de algumas cargas por eixo em certas estruturas de

pavimentos flexíveis, com variações da pressão de enchimento dos pneus; comparar deflexões no

topo do subleito nos diversos tipos de estruturas de pavimentos investigados; relacionar as

deflexões, utilizando os resultados obtidos nas simulações com a carga de eixo padrão, obtendo

razões entre estes; elevar estas razões ao expoente utilizado por Silva (2009) para a determinação do

fator de equivalência de carga; comparar os resultados encontrados com os do ábaco carga por eixo

x fator de equivalência de carga, apresentado no DNIT (2006); propor curva de fator de

equivalência de carga para eixos de caminhão fora de estrada, ou seja, cargas superiores às do ábaco

carga por eixo x fator de equivalência de carga para eixo simples apresentado no DNIT (2006).

FUNDAMENTAÇÃO TEÓRICA

MÉTODO DE DIMENSIONAMENTO DE PAVIMENTOS FLEXÍVEIS DO DNIT (2006)

A espessura total de um pavimento é determinada para proteger o subleito. O dimensionamento

baseia-se na capacidade de suporte do subleito e dos materiais que compõe o pavimento, no número

equivalente de operações de um eixo padrão (N) durante o período de projeto, no coeficiente

estrutural (K) e na espessura total do pavimento.

Capacidade de suporte: a avaliação é feita pelo método de ensaio CBR, determinando a capacidade

de suporte das camadas do pavimento e do subleito.

Exigências dos materiais empregados no pavimento: reforço do subleito: CBR > subleito e

expansão ≤ 2%; sub-base: CBR ≥ 20% e expansão ≤ 1%; e base: CBR ≥ 80% para N > 5,0 x 106 ou

CBR ≥ 60% para N ≤ 5,0 x 106, expansão ≤ 0,5%, limite de liquidez (LL) ≤ 25% e índice de

plasticidade (IP) ≤ 6%.

Número equivalente de operações de um eixo padrão (N): significa o número de solicitações que o

pavimento irá sofrer pelo eixo padrão de 8,2 toneladas durante a sua vida útil. Com este número,

juntamente com o suporte das camadas do pavimento e do subleito, determina-se a espessura total

do pavimento. O número N é função do volume do tráfego, dos fatores de equivalência de carga e

de eixo, e é dado pela Equação1:

(1)

Em que:

Vt – volume total de veículos no período de projeto; Fe: fator de eixo; eFc: fator de carga.

O volume médio diário de tráfego é dado pela Equação2:

Vt = 365 x Vm x PP (2)

Em que:

Vm: volume médio diário de tráfego; e PP: período de projeto (anos).

O fator de eixo (Fe) é um número que multiplicado pelo número de veículos resulta no número de

eixos correspondentes. O fator de carga (Fc) é um número que multiplicado pelo número de eixos,

fornece o número de eixos equivalentes ao eixo padrão. O Fe multiplicado pelo Fc resulta no Fv

(fator de veículo), isto é, um fator que multiplicado pelo número de veículos que operam, resulta no

número de eixos equivalentes ao eixo padrão.

Coeficiente de equivalência estrutural (K): são coeficientes que dependem do tipo de material

constituinte do pavimento. Ele relaciona a espessura que a camada deveria ter se fosse constituída

de material granular (padrão) com a espessura equivalente à do material utilizado na camada real.

São simbolizados: revestimento (Kr), base (Kb), sub-base (Ks) e reforço (Kref).

Determinação da espessura das camadas do pavimento: a espessura total do pavimento é dada em

função de N e do CBR do material. Determina-se, também, a cobertura acima do reforço do subleito

e a cobertura acima da sub-base. As coberturas das camadas serão calculadas referentes ao material

granular (coeficiente de equivalência estrutural igual a um).

As espessuras finais são obtidas pelo produto das espessuras pelos coeficientes estruturais relativos

a cada tipo de material da base (B), sub-base (h20) e reforço (hn).

FATOR DE EQUIVALÊNCIA DE CARGA

Fator de Equivalência de Carga (FEC): é utilizado para converter o número de solicitações do

tráfego real que solicita a via num número equivalente de operações de um eixo padrão (eixo

simples de rodas duplas de 8,2 toneladas), que sob o ponto de vista teórico irá provocar no

pavimento o mesmo dano destrutivo (SILVA, 2009).

Balbo (2007) utiliza o conceito de equivalência de cargas e adota como dano total o dano calculado

por cada passada de veículo, multiplicada pelo número de vezes que ele passou sobre a estrutura.

Sendo assim, chega-se a relação de FEC pela razão do número de passadas do eixo qualquer e o

número de passadas do eixo padrão.

Utiliza-se neste trabalho o critério da máxima deflexão ou deslocamento vertical de compressão no

topo do subleito, em função da praticidade do desenvolvimento do estudo através da utilização do

programa computacional ELSYM5. Este programa é bastante utilizado para análise do

dimensionamento de pavimentos e se baseia na aplicação da Teoria da Elasticidade na análise de

um sistema elástico-linear de camadas para obter respostas estruturais de um pavimento, como

mostra a Figura 1.

Figura 1: Respostas estruturais de um pavimento (SOUSA, 2011).

Segundo Darous (2003), o programa fornece as tensões horizontais, verticais e de cisalhamento,

assim como as tensões principais em qualquer ponto do sistema. As camadas são consideradas

horizontalmente infinitas, possuindo espessuras uniformes e finitas com exceção da última que

possui espessura infinita. Os módulos de resiliência e coeficientes de Poisson são constantes para

cada camada. As possibilidades relativas às configurações de carregamento estabelecem como

limite até dez cargas de rodas simples, cuja aplicação é distribuída uniformemente sobre uma área

circular na superfície do sistema. Cada pavimento analisado pode possuir uma ou até cinco camadas

elásticas.

MATERIAIS E MÉTODOS

Foram selecionados 17 caminhões convencionais comerciais e do tipo fora de estrada com cargas

por eixo diferentes e pressões de enchimento dos pneus de 80 psi, 100psi e 120 psi para análise de

variação das deflexões no topo do subleito de 5 estruturas pré-estabelecidas. Estas estruturas

possuem capacidades de suporte diferentes e foram escolhidas com o propósito de submetê-las ao

carregamento dos eixos dos caminhões com a variação da pressão de enchimento dos pneus,

visando avaliar a variação do FEC.

Os caminhões selecionados, tanto os convencionais quanto os fora de estrada, possuem eixo

dianteiro simples de rodas simples e eixos traseiros simples de rodas duplas.

Os caminhões convencionais analisados foram os que possuem carga por eixo de 6,0; 8,0; 8,2; 10,0;

12,0; 14,0; 16,0; 18,0 e 20,0 toneladas. Já para os caminhões fora de estrada, foram analisados os

modelos apresentados na Tabela 1, elaborada a partir de dados encontrados em CAT (2004) e CAT

I (2010).

Tabela 1: Modelos de caminhões fora de estrada analisados e suas respectivas cargas por eixo.

Fora de Estrada

Modelo Carga (t) Carga no eixo traseiro (%) Carga no eixo traseiro(t)

CAT 770 36,3 66 24,0

CAT 772 46 66 30,4

CAT 773G 56 65 36,4

CAT 775G 64,6 66 42,6

CAT 777G 90,8 67 60,8

Fora de Estrada – Mineração

Modelo Carga (t) Carga no eixo traseiro (%) Carga no eixo traseiro (t)

CAT 785C 136 67 91,1

CAT 789D 181 67 121,3

CAT 793F 226 67 151,4

As estruturas de pavimentos propostas foram selecionadas da seguinte forma: as estruturas de

pavimentos I, II e III foram determinadas com número e capacidade de suporte das camadas

diferentes para avaliação da hipótese da conversão dos resultados dos FEC, mesmo com a variação

de seus parâmetros, conforme as Figuras 2, 3 e 4. Já as estruturas de pavimentos IV e V, foram

selecionadas dentre as várias estruturas proposta por Sousa (2011), conforme as Figuras 5 e 6.

Figura 2: Estrutura do pavimento I.

Figura 3: Estrutura do pavimento II.

Figura 4: Estrutura do pavimento III.

Figura 5: Estrutura do pavimento IV..

Figura 6: Estrutura do pavimento V.

As estruturas de pavimento IV e V foram adotadas pelo critério de menor espessura da camada e

por restrição ao limite de deflexão. O limite de deflexão adotado por Sousa (2011) foi 2.000 µε.

Foram selecionadas as estruturas C2 e C6 de acordo com a Tabela 2.

Tabela 2: Dimensionamento de pavimentos flexíveis proposto por Sousa (2011).

Caso

Espessura da Camada (m) Requisitos de Otimização

Revestimento Base Sub-base Total

Redução de

espessura em

relação ao caso

original

Respeito ao

limite de

deformação

DNER

original 0,13 0,63 1,12 1,88 - x

C1 0,13 0,73 1,11 1,97 x ✔

C2 0,13 0,73 0,64 1,50 ✔ ✔

C3 0,13 0,73 0,14 1,00 ✔ x

C4 0,13 0,73 0,34 1,20 ✔ x

C5 0,13 0,73 0,44 1,30 ✔ x

C6 0,13 0,73 0,54 1,40 ✔ ✔

Na determinação do FEC para cada carregamento, precisou-se relacionar as deflexões no topo do

subleito de cada carga por eixo em análise e a da carga por eixo padrão. Para encontrar esta

deflexão no topo do subleito, empregou-se o programa computacional ELSYM 5.Os dados de

entrada do ELSYM 5 foram número de camadas e suas respectivas características (módulo de

elasticidade E, coeficiente de Poisson ν e espessura da camada);características do carregamento

como pressão de enchimento dos pneus em kPa, o raio de aplicação da carga a, número de

aplicações de carga e sua posição no plano XY e, para a determinação do ponto de avaliação,

analisou-se a posição da carga no plano XY e a profundidade no eixo Z, como mostrado na Figura

7.

Figura 7: Posições das cargas segundo os eixos X, Y e Z.

Os posicionamentos das rodas e dos pontos de análise no eixo X estão apresentados nas Tabelas 3 e

4.

Tabela 3: Posicionamentos das rodas e dos pontos de análise no eixo X para caminhões

convencionais.

Caminhões Convencionais

Carga no eixo

traseiro (ton.)

Carga por

roda (kgf)

Posicionamento das rodas

- eixo X (m)

Posicionamento das análises na direção do

eixo X (m)

6,0 1500 0,00 0,33 0,00 0,08 0,16 0,33

8,0 2000 0,00 0,33 0,00 0,08 0,16 0,33

8,2 2050 0,00 0,33 0,00 0,08 0,16 0,33

10,0 2500 0,00 0,33 0,00 0,08 0,16 0,33

12,0 3000 0,00 0,33 0,00 0,08 0,16 0,33

14,0 3500 0,00 0,33 0,00 0,08 0,16 0,33

16,0 4000 0,00 0,33 0,00 0,08 0,16 0,33

18,0 4500 0,00 0,33 0,00 0,08 0,16 0,33

20,0 5000 0,00 0,33 0,00 0,08 0,16 0,33

Tabela 4: Posicionamentos das rodas e dos pontos de análise no eixo X para caminhões fora de

estrada.

Fora de Estrada

Modelo Carga no eixo

traseiro (ton.)

Carga por

roda (kgf)

Posicionamento das

rodas - eixo X (m)

Posicionamento das análises na

direção do eixo X (m)

CAT 770 24,0 5989,5 0,00 0,58 0,00 0,14 0,29 0,58

CAT 772 30,4 7590 0,00 0,64 0,00 0,16 0,32 0,64

CAT 773G 36,4 9100 0,00 0,74 0,00 0,18 0,37 0,74

CAT 775G 42,6 10659 0,00 0,74 0,00 0,18 0,37 0,74

CAT 777G 60,8 15209 0,00 1,15 0,00 0,29 0,58 1,15

Fora de Estrada – Mineração

Modelo Carga no eixo

traseiro (ton.)

Carga por

roda (kgf)

Posicionamento das

rodas - eixo X (m)

Posicionamento das análises na

direção do eixo X (m)

CAT 785C 91,1 22780 0,00 1,15 0,00 0,29 0,58 1,15

CAT 789D 121,3 30317,5 0,00 1,15 0,00 0,29 0,58 1,15

CAT 793F 151,4 37855 0,00 1,32 0,00 0,33 0,66 1,32

O FEC foi obtido em função da deflexão no topo do subleito. Esta deflexão foi determinada por

meio da aplicação do carregamento em análise, sobre uma dada estrutura de pavimento e uma

pressão de enchimento do pneu. Visando atender ao propósito desse trabalho, foram construídos

seis gráficos comparando os referidos parâmetros.

As características de cada estrutura de pavimento analisada estão apresentadas na Tabela 5.

Tabela 5: Características das estruturas dos pavimentos analisados.

Estruturas Camadas Espessura

(m)

Espessura

total

(m)

Módulo de

Elasticidade

(kPa)

Coeficiente

de Poisson

I Reforço do subleito 0,20

0,2 120.000 0,40

Subleito Infinito 80.000 0,40

II

Base 0,20

0,35

400.000 0,40

Reforço do subleito 0,15 200.000 0,40

Subleito Infinito 80.000 0,40

III

Revestimento 0,10

0,45

4.000.000 0,35

Base 0,20 500.000 0,40

Reforço do subleito 0,15 200.000 0,40

Subleito Infinito 80.000 0,40

IV

Revestimento 0,13

1,40

150.000 0,40

Base 0,73 200.000 0,40

Sub-base 0,54 120.000 0,40

Subleito Infinito 65.000 0,40

V

Revestimento 0,13

1,50

150.000 0,40

Base 0,73 200.000 0,40

Sub-base 0,64 120.000 0,40

Subleito Infinito 65.000 0,40

Com os resultados das deflexões no topo do subleito obtidos através do programa computacional

ELSYM5, escolheu-se a maior deflexão de cada carregamento e determinou-se o FEC utilizando a

Equação 2, com o expoente proposto por Pereira (1992).

(

)

(3)

Em que: Dcarga qualquer é a maior deflexão no topo do subleito devido à aplicação da carga do eixo

qualquer e Deixo padrão é a deflexão no topo do subleito devido à aplicação da carga do eixo padrão

(8,2 t).

Nas Figuras 8, 9 e 10, foram mantidas constantes as estruturas do pavimento e variando o valor da

pressão de enchimento dos pneus. Pode-se notar que não houve variação significativa dos valores

dos fatores de equivalência de carga para a variação da pressão, visto que as curvas estão

praticamente superpostas.

Foi inserido nesses gráficos, como critério de comparação, os dados retirados do ábaco carga por

eixo x FEC, segundo DNIT (2006), mostrando que os resultados encontrados nessa pesquisa estão

numericamente próximos dos apresentados pela referida fonte. Essa confirmação de valores credita

confiabilidade aos dados encontrados nesta pesquisa.

Figura 8: Representa a Estrutura de pavimento I– (Gráfico Carga por Eixo Versus FEC).

0

2

4

6

8

10

12

14

0,1 1 10

Ca

rga

po

r E

ixo

(to

n)

FEC

Estrutura de pavimento I

563 kPa

703 kPa

844 kPa

DNIT

Figura 9: Representa a Estrutura de pavimento II – (Gráfico Carga por Eixo Versus FEC).

Figura 10: Representa a Estrutura de pavimento III – (Gráfico Carga por Eixo Versus FEC).

Nas Figuras 11, 12 e 13, as pressões de enchimento dos pneus foram mantidas constantes e variou-

se a estrutura do pavimento para aplicação da carga.

0

2

4

6

8

10

12

14

0,1 1 10

Ca

rga

po

r E

ixo

(to

n)

FEC

Estrutura de pavimento II

563 kPa

703 kPa

844 kPa

DNIT

0

2

4

6

8

10

12

14

0,1 1 10

Ca

rga

po

r E

ixo

(to

n)

FEC

Estrutura de pavimento III

563 kPa

703 kPa

844 kPa

DNIT

Figuras 11: Representa a Pressão de enchimento dos pneus de 563 kPa - (Gráfico Carga por Eixo Versus FEC).

Figuras 12: Representa a Pressão de enchimento dos pneus de 703 kPa - (Gráfico Carga por Eixo Versus FEC).

Figuras 13: Representa a Pressão de enchimento dos pneus de 844 kPa - (Gráfico Carga por Eixo Versus FEC).

0

2

4

6

8

10

12

14

0,1 1 10

Ca

rga

po

r E

ixo

(to

n)

FEC

Pressão de Enchimento dos Pneus - 563 kPa

Estrutura I

Estrutura II

Estrutura III

DNIT

0

2

4

6

8

10

12

14

0,1 1 10

Ca

rga

po

r E

ixo

(to

n)

FEC

Pressão de Enchimento dos Pneus - 703 kPa

Estrutura I

Estrutura II

Estrutura III

DNIT

0

2

4

6

8

10

12

14

0,1 1 10

Ca

rga

po

r E

ixo

(to

n)

FEC

Pressão de Enchimento dos Pneus - 844 kPa

Estrutura I

Estrutura II

Estrutura III

DNIT

Também nota-se que não houve oscilação significativa dos valores dos fatores de equivalência de

carga para a variação da estrutura do pavimento, visto que as curvas também estão superpostas. Nas

figuras supracitadas, foram inseridos como critério de comparação, os dados retirados do ábaco

carga por eixo x FEC segundo DNIT (2006), mostrando que os resultados encontrados na pesquisa

estão próximos aos já utilizados por essa fonte. Logo, credita-se confiabilidade aos dados

encontrados nesta pesquisa.

CURVA CARGA POR EIXO X FEC PARA CAMINHÕES FORA DE ESTRADA

Com a ratificação dos resultados obtidos nessa pesquisa para os caminhões convencionais cuja

hipótese da convergência dos fatores de equivalência de carga tem sustentabilidade, mesmo com a

variação dos parâmetros de análise da deflexão no topo do subleito, observou-se que Sousa (2011)

extrapolou a curva apresentada no ábaco carga por eixo x FEC apresentada em DNIT (2006), com o

uso de regressão matemática, e encontrou o valor de 1.640.000 para o FEC relativo a 167 toneladas

para o eixo simples de roda dupla, utilizando a Equação 4.

(4)

Em que C é a carga por eixo, em toneladas.

O resultado para o FEC encontrado através do uso da razão entre as deflexões no topo do subleito

da carga qualquer pela carga do eixo padrão, elevado ao expoente proposto por Pereira (1992), para

a carga de 151,42 toneladas, é igual a 13.000.000. Comparando os resultados encontrados nessa

pesquisa com os de Sousa (2011), nota-se uma grande discrepância. Esta constatação leva a crer que

para cálculo dos fatores de equivalência de carga para caminhões fora de estrada precisam ser

pesquisados de forma mais eficiente, ou seja, através de observações dos efeitos destrutivos das

cargas desses veículos no campo.

A Figura 14 apresenta o gráfico com os resultados de FEC encontrados para os caminhões fora de

estrada analisados.

Figura 14: FEC - Eixo simples roda dupla.

0

20

40

60

80

100

120

140

160

0,1 1 10 100 1000 10000 100000 1000000 10000000100000000

Ca

rga

po

r E

ixo

(to

n)

FEC

FEC - Eixo simples roda dupla

Estrutura IV

Estrutura V

DNIT

Pode-se verificar que mesmo com a variação da estrutura do pavimento, para a pressão de

enchimento dos pneus de 80 psi, as curvas são muito próximas. Nota-se que a curva segue a mesma

tendência da curva apresentada no ábaco carga por eixo x FEC em DNIT (2006), como se pode

observar na Figura 15 para a estrutura IV.

Figura 15: Validação dos resultados para a estrutura IV.

Vale ressaltar o desvio das curvas com a alteração dos parâmetros. As curvas seguem a mesma

tendência e os resultados possuem a mesma ordem de grandeza. Para os valores das cargas por eixo

dos caminhões convencionais, estes valores são desprezíveis, mas para os valores das cargas por

eixo dos caminhões fora de estrada este desvio pode ser significativo.

CONCLUSÃO

Na análise da determinação do fator de equivalência de carga (FEC) para eixo simples de rodas

duplas, em função das deflexões recuperáveis no topo do subleito, confirmou-se, via resultados das

variações de carregamentos de eixos entre 6,0 e 151,42 toneladas, pressões de enchimento dos

pneus de 80 psi, 100 psi e 120 psi, e cinco estruturas de pavimentos diferentes, que o FEC não

sofreu grandes variações com os diversos parâmetros adotados.

O FEC manteve-se estável mesmo nas estruturas de pavimento analisada com baixa capacidade de

suporte, assim como nas estruturas de pavimento robustas e com alta capacidade de suporte de

carregamento por eixo. Isso comprova a flexibilidade de aplicação dos resultados encontrados.

Entende-se que com esta contribuição os pavimentos flexíveis solicitados pelos caminhões fora de

estrada poderão ser dimensionados pelo uso do método de dimensionamento de pavimentos

flexíveis do DNIT (2006), sem a necessidade de extrapolação da curva do FEC.

REFERÊNCIAS BIBLIOGRÁFICAS

BALBO, J. T. Pavimentação Asfáltica: materiais, projetos e restauração. 1ª Ed. São Paulo:

Oficina de Textos. 558p. 2007.

CAT. Performancehandbook.Caterpilar Inc. Edition 35, 1281p. Peoria Illinois. 2004.

CAT I. 793D Mining Truck Manual.CaterpilarInc.USA, 2010. 32p.

DAROUS, J. Estudo comparativo entre sistemas de cálculo de tensões e deformações

utilizados em dimensionamento de pavimentos asfálticos novos. 2003. 290p. Dissertação

(Mestrado em Engenharia Civil) – Programa de Pós-Graduação em Engenharia. Universidade

Federal do Rio de Janeiro. Rio de Janeiro – RJ.

DEPARTAMENTO NACIONAL DE INFRAESTRUTURA DE TRANSPORTES – DNIT.

Manual de Pavimentação. 3ª Ed. Rio de Janeiro: Instituto de Pesquisas Rodoviárias. 274p. 2006.

PEREIRA, D. R. A. M. Contribuição ao estudo de fatores de equivalência de cargas. 1992.

204p. Dissertação (Mestrado em Engenharia) – Departamento de Engenharia de Transportes. Escola

Politécnica da Universidade de São Paulo – USP. São Paulo – SP.

SILVA, T. O. da. Estudo de estradas não pavimentadas da malha viária do município de

Viçosa – MG. 2009. 119p. Tese (Doutorado em Engenharia Civil) – Programa de Pós-Graduação

em Engenharia Civil. Universidade Federal de Viçosa. Viçosa – MG.

SOUSA, L. M. L. S. de. Estudos de dimensionamento estrutural de estradas de mina a céu

aberto. 2011. 157p. Dissertação (Mestrado) – Programa de Pós-Graduação em Engenharia Mineral.

Universidade Federal de Ouro Preto. Ouro Preto – MG.

ANEXO

As tabelas 6 e 7 apresentam os resultados de FEC obtidos para cada carga de caminhão, apresenta também os valores de a (raio de aplicação da

carga), e os valores obtidos pelo Programa Computacional ELSYM5 para a deflexão no topo do subleito.

Tabela 6: Valores de FEC para as estruturas I, II e III

Estrutura Nome Carga por Roda

(kgf)

Pressão de Enchimento

(Kpa) a (cm) z (cm)

Deformação no topo do Subleito (m) Relação entre deflexões

(m/m) FEC

Carga por Eixo

(ton)

FEC

(DNIT) x = 0 x = 0.08 x = 0.16 x = 0.33

I tcc01 2050 563 10,77 0,2 0,0007411 0,0007596 0,0007638 0,0007411 1 1 8,2 1

I tcc02 1500 563 9,21 0,2 0,0005521 0,0005619 0,0005616 0,0005521 0,735663786 0,160524902 6 0,26

I tcc03 2000 563 10,64 0,2 0,0007245 0,0007421 0,0007458 0,0007245 0,976433621 0,867523001 8 0,97

I tcc04 2500 563 11,89 0,2 0,0008905 0,0009174 0,0009265 0,0008905 1,213013878 3,160502376 10 3,2

I tcc05 3000 563 13,03 0,2 0,001054 0,001091 0,001106 0,001054 1,448023043 9,079481398 12 9,5

I tcc06 2050 703 9,63 0,2 0,0007501 0,0007648 0,0007656 0,0007501 1 1 8,2 1

I tcc07 1500 703 8,24 0,2 0,0005578 0,0005652 0,0005629 0,0005578 0,738244514 0,163909891 6 0,26

I tcc08 2000 703 9,51 0,2 0,0007325 0,0007465 0,000747 0,0007325 0,975705329 0,8636743 8 0,97

I tcc09 2500 703 10,64 0,2 0,0009046 0,0009267 0,0009313 0,0009046 1,216431557 3,21393785 10 3,2

I tcc10 3000 703 11,65 0,2 0,001071 0,001102 0,001112 0,001071 1,45245559 9,246363388 12 9,5

I tcc11 2050 844 8,79 0,2 0,0007575 0,0007694 0,0007678 0,0007575 1 1 8,2 1

I tcc12 1500 844 7,52 0,2 0,0005618 0,0005676 0,0005639 0,0005618 0,737717702 0,163214121 6 0,26

I tcc13 2000 844 8,69 0,2 0,0007412 0,0007525 0,0007507 0,0007412 0,978034832 0,876034897 8 0,97

I tcc14 2500 844 9,71 0,2 0,0009174 0,000933 0,0009343 0,0009147 1,214322849 3,180880109 10 3,2

I tcc15 3000 844 10,64 0,2 0,001086 0,001113 0,001118 0,001086 1,453080322 9,27008796 12 9,5

II tcc16 2050 563 10,77 0,35 0,0004377 0,0004544 0,0004633 0,0004377 1 1 8,2 1

II tcc17 1500 563 9,21 0,35 0,0003214 0,0003335 0,0003402 0,0003214 0,734297431 0,158756422 6 0,26

II tcc18 2000 563 10,64 0,35 0,0004274 0,0004436 0,0004523 0,0004274 0,976257285 0,866589833 8 0,97

II tcc19 2500 563 11,89 0,35 0,0005318 0,0005521 0,0005627 0,0005318 1,214547809 3,184393219 10 3,2

II tcc20 3000 563 13,03 0,35 0,0006363 0,0006606 0,0006731 0,0006363 1,452838334 9,260892292 12 9,5

II tcc21 2050 703 9,63 0,35 0,0004383 0,0004548 0,000464 0,0004383 1 1 8,2 1

II tcc22 1500 703 8,24 0,35 0,000322 0,0003341 0,0003409 0,000322 0,734698276 0,159273548 6 0,26

II tcc23 2000 703 9,51 0,35 0,0004275 0,0004437 0,0004526 0,0004275 0,975431034 0,862228463 8 0,97

II tcc24 2500 703 10,64 0,35 0,0005337 0,0005539 0,0005648 0,0005337 1,217241379 3,226708996 10 3,2

II tcc25 3000 703 11,65 0,35 0,000638 0,0006623 0,000675 0,000638 1,454741379 9,333414129 12 9,5

II tcc26 2050 844 8,79 0,35 0,0004393 0,0004558 0,0004651 0,0004393 1 1 8,2 1

II tcc27 1500 844 7,52 0,35 0,0003227 0,0003346 0,0003414 0,0003227 0,734035691 0,158419508 6 0,26

II tcc28 2000 844 8,69 0,35 0,0004294 0,0004456 0,0004547 0,0004294 0,977639217 0,873925406 8 0,97

II tcc29 2500 844 9,71 0,35 0,0005349 0,000555 0,0005662 0,0005349 1,217372608 3,228782484 10 3,2

II tcc30 3000 844 10,64 0,35 0,0006407 0,000665 0,0006781 0,0006407 1,457966029 9,457378827 12 9,5

Continuação da Tabela 6.

Estrutura Nome Carga por Roda

(kgf)

Pressão de Enchimento

(Kpa) a (cm) z (cm)

Deformação no topo do Subleito (m) Relação entre deflexões

(m/m) FEC

Carga por Eixo

(ton)

FEC

(DNIT) x = 0 x = 0.08 x = 0.16 x = 0.33

III tcc31 2050 563 10,77 0,45 0,0002915 0,0002986 0,0003006 0,0002915 1 1 8,2 1

III tcc32 1500 563 9,21 0,45 0,0001249 0,0002202 0,0002204 0,0002149 0,733200266 0,157348119 6 0,26

III tcc33 2000 563 10,64 0,45 0,0002847 0,0002916 0,0002935 0,0002847 0,976380572 0,867242178 8 0,97

III tcc34 2500 563 11,89 0,45 0,0003539 0,0003625 0,0003657 0,0003539 1,216566866 3,216068788 10 3,2

III tcc35 3000 563 13,03 0,45 0,0004238 0,0004341 0,0004383 0,0004238 1,458083832 9,461933341 12 9,5

III tcc36 2050 703 9,63 0,45 0,0002926 0,0002998 0,0003007 0,0002926 1 1 8,2 1

III tcc37 1500 703 8,24 0,45 0,0002164 0,0002217 0,0002206 0,0002164 0,737279681 0,162637492 6 0,26

III tcc38 2000 703 9,51 0,45 0,0002856 0,0002926 0,0002933 0,0002856 0,975390755 0,862016314 8 0,97

III tcc39 2500 703 10,64 0,45 0,0003555 0,0003641 0,0003665 0,0003555 1,218822747 3,251769421 10 3,2

III tcc40 3000 703 11,65 0,45 0,0004246 0,0004349 0,0004386 0,0004246 1,458596608 9,481779516 12 9,5

III tcc41 2050 844 8,79 0,45 0,0002944 0,0003015 0,0003011 0,0002944 1 1 8,2 1

III tcc42 1500 844 7,52 0,45 0,0002179 0,0002223 0,0002207 0,0002179 0,737313433 0,162681864 6 0,26

III tcc43 2000 844 8,69 0,45 0,0002879 0,0002979 0,0002943 0,0002879 0,988059701 0,930921391 8 0,97

III tcc44 2500 844 9,71 0,45 0,000357 0,0003657 0,000367 0,000357 1,217247098 3,226799329 10 3,2

III tcc45 3000 844 10,64 0,45 0,0004267 0,0004371 0,00044 0,0004267 1,459369818 9,511770877 12 9,5

Tabela 7: Valores de FEC para as estruturas IV e V.

Estrutura Nome

Carga por

Roda

(kgf)

Pressão de

Enchimento

(KPa)

a (cm) z

(cm)

Posicionamento das análises

de carregamento (m) Deformação no topo do Subleito (m)

Relação entre

deflexões

(m/m)

FEC

Carga

por Eixo

(ton)

FEC

(DNIT)

IV tcc46 2050 563 10,77 1,4 0,00 0,08 0,16 0,33 0,0001833 0,0001847 0,0001848 0,0001833 1 1 8,2 1

IV tcc58 1500 563 9,21 1,4 0,00 0,08 0,16 0,33 0,0001340 0,0001350 0,0001353 0,0001340 0,7321429 0,1560007 6 0,26

IV tcc59 2000 563 10,64 1,4 0,00 0,08 0,16 0,33 0,0001790 0,0001803 0,0001804 0,0001790 0,9761905 0,8662365 8 0,97

IV tcc60 2500 563 11,89 1,4 0,00 0,08 0,16 0,33 0,0002228 0,0002245 0,0002252 0,0002228 1,2186147 3,24846351 10 3,2

IV tcc61 3000 563 13,03 1,4 0,00 0,08 0,16 0,33 0,0002665 0,0002685 0,0002703 0,0002703 1,4626623 9,64036696 12 9,5

IV tcc62 3500 563 14,07 1,4 0,00 0,08 0,16 0,33 0,0003094 0,0003117 0,0003151 0,0003094 1,7050866 24,0423555 14 12

IV tcc63 4000 563 15,04 1,4 0,00 0,08 0,16 0,33 0,0003521 0,0003548 0,0003598 0,0003521 1,9469697 53,0018985 16 16

IV tcc64 4500 563 15,96 1,4 0,00 0,08 0,16 0,33 0,0003952 0,0003982 0,0004050 0,0003952 2,1915584 107,287089 18 150

IV tcc65 5000 563 16,82 1,4 0,00 0,08 0,16 0,33 0,0004376 0,0004409 0,0004475 0,0004376 2,4215368 194,445861 20 300

IV tcc66 5989,5 563 18,41 1,4 0,00 0,14 0,29 0,58 0,0005046 0,0005132 0,0005114 0,0005046 2,7770563 439,866728 23,958 -

IV tcc67 7590 563 20,72 1,4 0,00 0,16 0,32 0,64 0,0006293 0,0006423 0,0006428 0,0006293 3,478355 1682,85647 30,36 -

IV tcc68 9100 563 22,69 1,4 0,00 0,18 0,37 0,74 0,0007388 0,0007573 0,0007617 0,0007388 4,1217532 4626,72376 36,4 -

IV tcc69 10659 563 24,56 1,4 0,00 0,18 0,37 0,74 0,0008633 0,0008849 0,0008913 0,0008633 4,8230519 11800,9084 42,636 -

Continuação da Tabela 7.

Estrutura Nome

Carga por

Roda

(kgf)

Pressão de

Enchimento

(KPa)

a (cm) z

(cm)

Posicionamento das análises

de carregamento (m) Deformação no topo do Subleito (m)

Relação entre

deflexões

(m/m)

FEC

Carga

por Eixo

(ton)

FEC

(DNIT)

IV tcc70 15209 563 29,33 1,4 0,00 0,29 0,58 1,15 0,001135 0,001180 0,001198 0,001135 6,482684 68745,9564 60,836 -

IV tcc71 22780 563 35,90 1,4 0,00 0,29 0,58 1,15 0,001693 0,001760 0,001786 0,001693 9,6645022 742479,671 91,12 -

IV tcc72 30317,5 563 41,42 1,4 0,00 0,29 0,58 1,15 0,002244 0,002333 0,002367 0,002244 12,808442 3977135,6 121,27 -

IV tcc73 37855 563 46,28 1,4 0,00 0,33 0,66 1,32 0,002704 0,002819 0,002856 0,002704 15,454545 12178284,4 151,42 -

V tcc52 2050 563 10,77 1,5 0,00 0,08 0,16 0,33 0,0001720 0,0001734 0,0001743 0,0001720 1 1 8,2 1

V tcc74 1500 563 9,21 1,5 0,00 0,08 0,16 0,33 0,0001256 0,0001266 0,0001277 0,0001256 0,7326449 0,15663919 6 0,26

V tcc75 2000 563 10,64 1,5 0,00 0,08 0,16 0,33 0,0001682 0,0001695 0,0001704 0,0001682 0,9776248 0,87384853 8 0,97

V tcc76 2500 563 11,89 1,5 0,00 0,08 0,16 0,33 0,0002098 0,0002114 0,0002127 0,0002098 1,2203098 3,27548295 10 3,2

V tcc77 3000 563 13,03 1,5 0,00 0,08 0,16 0,33 0,0002511 0,0002531 0,0002554 0,0002511 1,4652897 9,7440201 12 9,5

V tcc78 3500 563 14,07 1,5 0,00 0,08 0,16 0,33 0,0002917 0,0002949 0,0002976 0,0002917 1,707401 24,237481 14 12

V tcc79 4000 563 15,04 1,5 0,00 0,08 0,16 0,33 0,0003322 0,0003348 0,0003400 0,0003322 1,9506598 53,6033259 16 16

V tcc80 4500 563 15,96 1,5 0,00 0,08 0,16 0,33 0,0003728 0,0003757 0,0003827 0,0003728 2,1956397 108,48319 18 150

V tcc81 5000 563 16,82 1,5 0,00 0,08 0,16 0,33 0,0004128 0,0004161 0,0004228 0,0004128 2,4257028 196,447817 20 300

V tcc82 5989,5 563 18,41 1,5 0,00 0,14 0,29 0,58 0,0004777 0,0004850 0,0004822 0,0004777 2,7825588 445,085956 23,958 -

V tcc83 7590 563 20,72 1,5 0,00 0,16 0,32 0,64 0,0005961 0,0006072 0,0006063 0,0005961 3,4836489 1698,17657 30,36 -

V tcc84 9100 563 22,69 1,5 0,00 0,18 0,37 0,74 0,0007007 0,0007168 0,0007191 0,0007007 4,1256454 4652,8199 36,4 -

V tcc85 10659 563 24,56 1,5 0,00 0,18 0,37 0,74 0,0008186 0,0008373 0,0008416 0,0008186 4,8284567 11879,9304 42,636 -

V tcc86 15209 563 29,33 1,5 0,00 0,29 0,58 1,15 0,001081 0,001122 0,001138 0,001081 6,528973 71723,3572 60,836 -

V tcc87 22780 563 35,90 1,5 0,00 0,29 0,58 1,15 0,001612 0,001674 0,001698 0,001612 9,7418244 778587,704 91,12 -

V tcc88 30317,5 563 41,42 1,5 0,00 0,29 0,58 1,15 0,002138 0,002219 0,002251 0,002138 12,914515 4177480,63 121,27 -

V tcc89 37855 563 46,28 1,5 0,00 0,33 0,66 1,32 0,002581 0,002689 0,002724 0,002581 15,628227 13016912,9 151,42 -