30.11.2007 kosmologie, ws 07/08, prof. w. de boer 1 vorlesung 6: roter faden: 1.cosmic microwave...

84
30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: . Cosmic Microwave Background radiation (CMB

Upload: adalstan-abegglen

Post on 06-Apr-2016

222 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1

Vorlesung 6:

Roter Faden:

1. Cosmic Microwave Background radiation (CMB)

Page 2: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 2

Pfeiler der Urknalltheorie:

1) Hubble Expansion2) CMB3) Kernsynthese 1) beweist dass es Urknall gab und 2,3) beweisen,dass Univ. am Anfang heiss war

Zum Mitnehmen

Page 3: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 3

Bisher:Ausdehnungund Alter desUniversumsberechnet.

Wie ist die Tempe-raturentwicklung?Am Anfang ist dieEnergiedichtedominiert durchStrahlung.

Page 4: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 4

Nach Rekombination ‘FREE STREAMING’ der Photonen

Page 5: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 5

Last Scattering Surface (LSS)

Page 6: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 6

Temperaturentwicklung des Universums

Page 7: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 7

Entstehung der 3K Kosmischen Hintergrundstrahlung Cosmic Microwave Background (CMB))

Page 8: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 8

Schwarzkörperstrahlung: ein Thermometer des Universums

Erwarte Plancksche Verteilungder CMB mit einer TemperaturT= 2.7 K, denn T 1/S 1/1+z. Entkoppelung bei T=3000 K , z=1100.T jetzt also 3000/1100 =2.7 K Dies entspricht λmax=2-3 mm (Mikrowellen)

Page 9: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 9

Das elektromagnetische Spektrum

Page 10: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 10

Anfang 2003: WMAP Satellit mißt Anisotropie der CMB sehr genau.

Geschichte der CMB

Page 11: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 11

Entdeckung der CMB von Penzias und Wilson in 1965

Page 12: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 12

The COBE satellite: first precision CMB experiment

Page 13: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 13

Schematic view of COBE in orbit around the earth. The altitude at insertion was 900 km. The axis of rotation is at approximately 90° with respect to the direction to the sun. From Boggess et al. 1992.

COBE orbit

Page 14: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 14

Kosmische Hintergrundstrahlung gemessen mit dem COBE Satelliten (1991)

T = 2.728 ± 0.004 K Dichte der Photonen 412 pro cm3

Wellenlänge der Photonen ca. 1,5 mm, so dichteste Packungca. (10 mm / 1.5 mm)3 = ca. 300/cm3, so 400 sind viele Photonen/cm3

Mather (NASA), Smoot (Berkeley)Nobelpreis 2006

Page 15: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 15

COBE satellite(1992)

WMAP satellite(2003)

Bell Labs(1963)

(highlights, there are many others)

Observing the Microwave Background

Page 16: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 16

measured by W(ilkinson)MAP Satellite

90 K

60 K

300 K

Page 17: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 17

Auflösungsvermögen

Page 18: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 18

WMAP Elektronik

UHMT=Ultrahigh Mobility Transistors(100 GHz)

Page 19: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 19

Nonlinear Device Mixer

Heterodyne (=mixing, Überlagerung) microwave receiver for downshifting the frequency

Nach dem Filter:

Page 20: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 20

Lagrange Punkt 2

Page 21: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 21

Himmelsabdeckung

Page 22: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 22

WMAP vs COBE

7

0.2

45 times sensitivityWMAP

Page 23: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 23

The Universe is approximately about 13.7 billion years old, according to the standard cosmological Big Bang model. At this time, it was a state of high uniformity, was extremely hot and dense was filled with elementary particles and was expanding very rapidly. About 380,000 years after the Big Bang, the energy of the photons had decreased and was not sufficient to ionise hydrogen atoms. Thereafter the photons “decoupled” from the other particles and could move through the Universe essentially unimpeded. The Universe has expanded and cooled ever since, leaving behind a remnant of its hot past, the Cosmic Microwave Background radiation (CMB). We observe this today as a 2.7 K thermal blackbody radiation filling the entire Universe. Observations of the CMB give a unique and detailed information about the early Universe, thereby promoting cosmology to a precision science. Indeed, as will be discussed in more detail below, the CMB is probably the best recorded blackbody spectrum that exists. Removing a dipole anisotropy, most probably due our motion through the Universe, the CMB is isotropic to about one part in 100,000. The 2006 Nobel Prize in physics highlights detailed observations of the CMB performed with the COBE (COsmic Background Explorer) satellite.

Cosmology and the Cosmic Microwave Background

From Nobel prize 2006 announcement

Page 24: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 24

The discovery of the cosmic microwave background radiation has an unusual and interesting history. The basic theories as well as the necessary experimental techniques were available long before the experimental discovery in 1964. The theory of an expanding Universe was first given by Friedmann (1922) and Lemaître (1927). An excellent account is given by Nobel laureate Steven Weinberg (1993). Around 1960, a few years before the discovery, two scenarios for the Universe were discussed. Was it expanding according to the Big Bang model, or was it in a steady state? Both models had their supporters and among the scientists advocating the latter were Hannes Alfvén (Nobel prize in physics 1970), Fred Hoyle and Dennis Sciama. If the Big Bang model was the correct one, an imprint of the radiation dominated early Universe must still exist, and several groups were looking for it. This radiation must be thermal, i.e. of blackbody form, and isotropic.

Early work

Page 25: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 25

The discovery of the cosmic microwave background by Penzias and Wilson in 1964 (Penzias and Wilson 1965, Penzias 1979, Wilson 1979, Dicke et al. 1965) came as a complete surprise to them while they were trying to understand the source of unexpected noise in their radio-receiver (they shared the 1978 Nobel prize in physics for the discovery). The radiation produced unexpected noise in their radio receivers. Some 16 years earlier Alpher, Gamow and Herman (Alpher and Herman 1949, Gamow 1946), had predicted that there should be a relic radiation field penetrating the Universe. It had been shown already in 1934 by Tolman (Tolman 1934) that the cooling blackbody radiation in an expanding Universe retains its blackbody form. It seems that neither Alpher, Gamow nor Herman succeeded in convincing experimentalists to use the characteristic blackbody form of the radiation to find it. In 1964, however, Doroshkevich and Novikov (Doroshkevich and Novikov 1964) published an article where they explicitly suggested a search for the radiation focusing on its blackbody characteristics. One can note that some measurements as early as 1940 had found that a radiation field was necessary to explain energy level transitions in interstellar molecules (McKellar 1941). Following the 1964 discovery of the CMB, many, but not all, of the steady state proponents gave up, accepting the hot Big Bang model. The early theoretical work is discussed by Alpher, Herman and Gamow 1967, Penzias 1979, Wilkinson and Peebles 1983, Weinberg 1993, and Herman 1997.

First observations of CMB

CN=Cyan

Page 26: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 26

Following the 1964 discovery, several independent measurements of the radiation were made by Wilkinson and others, using mostly balloon-borne, rocket-borne or ground based instruments. The intensity of the radiation has its maximum for a wavelength of about 2 mm where the absorption in the atmosphere is strong. Although most results gave support to the blackbody form, few measurements were available on the high frequency (low wavelength) side of the peak. Some measurements gave results that showed significant deviations from the blackbody form (Matsumoto et al. 1988). The CMB was expected to be largely isotropic. However, in order to explain the large scale structures in the form of galaxies and clusters of galaxies observed today, small anisotropies should exist. Gravitation can make small density fluctuations that are present in the early Universe grow and make galaxy formation possible. A very important and detailed general relativistic calculation by Sachs and Wolfe showed how three-dimensional density fluctuations can give rise to two-dimensional large angle (> 1°) temperature anisotropies in the cosmic microwave background radiation (Sachs and Wolfe 1967).

Further observations of CMB

Page 27: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 27

Because the earth moves relative to the CMB, a dipole temperature anisotropy of the level of ΔT/T = 10-3 is expected. This was observed in the 1970’s (Conklin 1969, Henry 1971, Corey and Wilkinson 1976 and Smoot, Gorenstein and Muller 1977). During the 1970-ties the anisotropies were expected to be of the order of 10-2 – 10-4, but were not observed experimentally. When dark matter was taken into account in the 1980-ties, the predicted level of the fluctuations was lowered to about 10-5, thereby posing a great experimental challenge.

Dipol Anisotropy

Page 28: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 28

Because of e.g. atmospheric absorption, it was long realized that measurements of the high frequency part of the CMB spectrum (wavelengths shorter than about 1 mm) should be performed from space. A satellite instrument also gives full sky coverage and a long observation time. The latter point is important for reducing systematic errors in the radiation measurements. A detailed account of measurements of the CMB is given in a review by Weiss (1980).

The COBE story begins in 1974 when NASA made an announcement of opportunity for small experiments in astronomy. Following lengthy discussions with NASA Headquarters the COBE project was born and finally, on 18 November 1989, the COBE satellite was successfully launched into orbit. More than 1,000 scientists, engineers and administrators were involved in the mission. COBE carried three instruments covering the wavelength range 1 μm to 1 cm to measure the anisotropy and spectrum of the CMB as well as the diffuse infrared background radiation: DIRBE (Diffuse InfraRed Background Experiment), DMR (Differential Microwave Radiometer) and FIRAS (Far InfraRed Absolute Spectrophotometer). COBE’s mission was to measure the CMB over the entire sky, which was possible with the chosen satellite orbit. All previous measurements from ground were done with limited sky coverage. John Mather was the COBE Principal Investigator and the project leader from the start. He was also responsible for the FIRAS instrument. George Smoot was the DMR principal investigator and Mike Hauser was the DIRBE principal investigator.

The COBE mission

Page 29: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 29

For DMR the objective was to search for anisotropies at three wavelengths, 3 mm, 6 mm, and 10 mm in the CMB with an angular resolution of about 7°. The anisotropies postulated to explain the large scale structures in the Universe should be present between regions covering large angles. For FIRAS the objective was to measure the spectral distribution of the CMB in the range 0.1 – 10 mm and compare it with the blackbody form expected in the Big Bang model, which is different from, e.g., the forms expected from starlight or bremsstrahlung. For DIRBE, the objective was to measure the infrared background radiation. The mission, spacecraft and instruments are described in detail by Boggess et al. 1992. Figures 1 and 2 show the COBE orbit and the satellite, respectively.

The COBE mission

Page 30: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 30

COBE was a success. All instruments worked very well and the results, in particular those from DMR and FIRAS, contributed significantly to make cosmology a precision science. Predictions of the Big Bang model were confirmed: temperature fluctuations of the order of 10-5 were found and the background radiation with a temperature of 2.725 K followed very precisely a blackbody spectrum. DIRBE made important observations of the infrared background. The announcement of the discovery of the anisotropies was met with great enthusiasm worldwide.

The COBE success

Page 31: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 31

The DMR instrument (Smoot et al. 1990) measured temperature fluctuations of the order of 10-5 for three CMB frequencies, 90, 53 and 31.5 GHz (wavelengths 3.3, 5.7 and 9.5 mm), chosen near the CMB intensity maximum and where the galactic background was low. The angular resolution was about 7°. After a careful elimination of instrumental background, the data showed a background contribution from the Milky Way, the known dipole amplitude ΔT/T = 10-3 probably caused by the Earth’s motion in the CMB, and a significant long sought after quadrupole amplitude, predicted in 1965 by Sachs and Wolfe. The first results were published in 1992.The data showed scale invariance for large angles, in agreement with predictions from inflation models.

Figure 5 shows the measured temperature fluctuations in galactic coordinates, a figure that has appeared in slightly different forms in many journals. The RMS cosmic quadrupole amplitude was estimated at 13 ± 4 μK (ΔT/T = 5×10-6) with a systematic error of at most 3 μK (Smoot et al. 1992). The DMR anisotropies were compared and found to agree with models of structure formation by Wright et al. 1992. The full 4 year DMR observations were published in 1996 (see Bennett et al. 1996). COBE’s results were soon confirmed by a number of balloon-borne experiments, and, more recently, by the 1° resolution WMAP (Wilkinson Microwave Anisotropy Probe) satellite, launched in 2001 (Bennett et al. 2003).

CMB Anisotropies

Page 32: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 32

The 1964 discovery of the cosmic microwave background had a large impact on cosmology. The COBE results of 1992, giving strong support to the Big Bang model, gave a much more detailed view, and cosmology turned into a precision science. New ambitious experiments were started and the rate of publishing papers increased by an order of magnitude.

Our understanding of the evolution of the Universe rests on a number of observations, including (before COBE) the darkness of the night sky, the dominance of hydrogen and helium over heavier elements, the Hubble expansion and the existence of the CMB. COBE’s observation of the blackbody form of the CMB and the associated small temperature fluctuations gave very strong support to the Big Bang model in proving the cosmological origin of the CMB and finding the primordial seeds of the large structures observed today. However, while the basic notion of an expanding Universe is well established, fundamental questions remain, especially about very early times, where a nearly exponential expansion, inflation, is proposed. This elegantly explains many cosmological questions. However, there are other competing theories. Inflation may have generated gravitational waves that in some cases could be detected indirectly by measuring the CMB polarization. Figure 8 shows the different stages in the evolution of the Universe according to the standard cosmological model. The first stages after the Big Bang are still speculations.

Outlook

Page 33: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 33

The young Universe was fantastically bright. Why? Because everywhere it was hot, and hot things glow brightly. Before we learned why this was: collisions between charged particles create photons of light. As long as the particles and photons can thoroughly interact then a thermal spectrum is produced: a broad range with a peak.

The thermal spectrum’s shape depends only on temperature: Hotter objects appear bluer: the peak shifts to shorter wavelengths, with: pk = 0.0029/TK m = 2.9106/T nm. At 10,000K we have peak = 290 nm (blue), while at 3000K we have peak = 1000 nm (deep orange/red). Let’s now follow through the color of the Universe during its first million years. As the Universe cools, the thermal spectrum shifts from blue to red, spending ~80,000 years in each rainbow color. At 50 kyr, the sky is blue! At 120 kyr it’s green; at 400 kyr it’s orange; and by 1 Myr it’s crimson. This is a wonderful quality of the young Universe: it paints its sky with a human palette.

Quantitatively: since peak ~ 3106/T nm, and T ~ 3/S K, then peak ~ 106 / S nm. Notice that today, S = 1 and so peak = 106 nm = 1 mm, which is, of course, the peak of the CMB microwave spectrum.

The colour of the universe

Page 34: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 34

Hotter objects appear brighter. There are two reasons for this: More violent particle collisions make more energetic photons. Converting pk ~ 0.003/T m to the equivalent energy units, it turns out that in a thermal spectrum, the average photon energy is ~ kT. So, for systems in thermal equilibrium, the mean energy per particle or per photon is ~kT. Faster particles collide more frequently, so make more photons. In fact the number density of photons, nph T3. Combining these, we find that the intensity of thermal radiation increases dramatically with temperature Itot = 2.210-7 T4 Watt /m2 inside a gas at temperature T.

At high temperatures, thermal radiation has awesome power – the multitude of particle collisions is incredibly efficient at creating photons. To help feel this, consider the light falling on you from a noontime sun – 1400 Watt/m2 – enough to feel sunburned quite quickly. Let’s write this as Isun.

Float in outer space, exposed only to the CMB, and you experience a radiation field of I3K = 2.210-72.74 = 10 W/m2 = 10-8 Isun – not much! Here on Earth at 300K we have I300K ~ 1.8 kW/m2 (fortunately, our body temperature is 309K so you radiate 2.0 kW/m2, and don’t quickly boil!). A blast furnace at 1500 C (~1800K) has I1800K = 2.3 MW/m2 = 1600 Isun (you boil away in ~1 minute). At the time of the CMB (380 kyr), the radiation intensity was I3000K = 17 MW/m2 = 12,000 Isun – you evaporate in 10 seconds.In the Sun’s atmosphere, we have I5800K = 250 MW/m2 = 210,000 Isun. That’s a major city’s power usage, falling on each square meter.Radiation in the Sun’s 14 million K core has: I = 81021 W/m2 ~ 1019 Isun (you boil away in much less than a nano-second).

Light Intensity

Page 35: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 35

Warum ist die CMB so wichtig in der Kosmologie?

a) Die CMB beweist, dass das Universum früher heiß war und das die Temperaturentwicklung verstand ist

b) Alle Wellenlängen ab eine bestimmte Länge (=oberhalb den akustischen Wellenlängen) kommen alle gleich stark vor, wie von der Inflation vorhergesagt.

c) Bei kleinen Wellenlängen (akustische Wellen) zeigen ein sehr spezifisches Leistungsspektrum, woraus man schließen kann, dass das Universum FLACH ist und die baryonische Dichte nur 4-5% der Gesamtdichte ausmacht.

Page 36: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 36

Akustische Wellen im frühen Universum

Überdichten am Anfang: Inflation

Page 37: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 37

many waves of different many waves of different sizes, directions & phasessizes, directions & phases

all “superimposed”all “superimposed”

Sound wavesSound waves : :red/blue = high/lowred/blue = high/lowgas & light pressuregas & light pressure

Water wavesWater waves : :high/low level ofhigh/low level ofwater surfacewater surface

Sound waves in the skySound waves in the skyThis slide illustrates the situation. Imagine looking down on the ocean from a plane and seeing far below, surface waves. The patches on the microwave background are peaks and troughs of distant sound waves.

Page 38: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 38

Lineweaver 1997

peak

trough

Sky Maps Power Spectra

We “see” the CMB sound We “see” the CMB sound as as waves on the skywaves on the sky. .

Use special methods Use special methods to measure the to measure the strengthstrength of each wavelength.of each wavelength.

Shorter wavelengthsShorter wavelengthsare smaller frequenciesare smaller frequenciesare higher pitchesare higher pitches

Page 39: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 39

Akustische Wellen im frühen Universum

Überdichten am Anfang: Inflation

Bь Clarinet

Modern Flute

piano range

Joe Wolfe (UNSW)Flute power spectra

Page 40: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 40

Structures in 1-D

Long-wavelength

Short-wavelength

Larger amplitude/power

smaller amplitude/power

Power (Leistung) pro Wellenlänge

Page 41: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 41

This distribution has a lot of long wavelength powerAnd a little short wavelength power

Power (Leistung) pro Wellenlänge

Page 42: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 42

Page 43: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 43

CMB Anisotropie als Fkt. der Auflösung

ΔT=0.1 K

ΔT=3300 µK(Dipolanisotropie)

ΔT=18 µK(nach Subtraktionder Dipolanisotropie)

The oval shapes show a spherical surface, as in a global map. The whole sky can be thought of as the inside of a sphere.

Page 44: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 44

Mark WhittleMark WhittleUniversity of VirginiaUniversity of Virginia

Viele Plots und sounds von Whittles Webseite

http://www.astro.virginia.edu/~dmw8fSee also: “full presentation”See also: “full presentation”

Page 45: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 45

The CMB is highlyhighly uniformuniform,, as illustrated here. This means the young Universe is extremely smoothextremely smooth.

Three all-sky maps of the Three all-sky maps of the CMBCMB

The oval shapes show a spherical surface, as in a global map. The whole sky can be thought of as the inside of a sphere.

But not completely:COBE’s 1992 map showed patchinesspatchiness for the first time. red blue = tiny differences in brightness. Resolution ~7o.

WMAP’s now famous 2003 map of CMB patchiness (anisotropyanisotropy). Resolution ~ ¼o.

Patches in the brightness are about 1 part in 100,000 = a bacterium on a bowling ball = 60 meter waves on the surface of the Earth.

Page 46: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 46

• Surely, the vacuum of “space” must be silentsilent ? Not for the young Universe:

• Shortly after the big bang (eg @ CMB: 380,000 yrs)• all matter is spread out evenlyspread out evenly (no stars or galaxies yet)• Universe is smallersmaller everything closer together (by ×1000)• the density is much higherdensity is much higher (by ×109 = a billion)• 7 trillion photons & 7000 protons/electrons per cubic inch• all at 5400ºF with pressure 10-7 (ten millionth) Earth’s atm.

There is a hot thin atmosphere for sound wavesThere is a hot thin atmosphere for sound waves• unusual fluid intimate mix of gas & light• sound waves propagate at ~50% speed of light

Sound in space !?!Sound in space !?!

Page 47: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 47

While the universe was still foggy, atomic matter was trapped by light's pressure and prevented from clumping up. In fact, this high-pressure gas of light and atomic matter responds to the pull of gravity like air responds in an organ pipe – it bounces in and out to make sound waves. This half-million year acoustic era is a truly remarkable and useful period of cosmic history. To understand it better, we'll discuss the sound's pitch, volume, and spectral form, and explain how these sound waves are visible as faint patches on the Cosmic Microwave Background. Perhaps most bizarre: analyzing the CMB patchiness reveals in the primordial sound a fundamental and harmonics – the young Universe behaves like a musical instrument! We will, of course, hear acoustic versions, suitably modified for human ears.

Big Bang Akustikhttp://astsun.astro.virginia.edu/~dmw8f/teachco/

Page 48: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 48

Since it is light which provides the pressure, the speed of pressure waves (sound) is incredibly fast: vs ~ 0.6c! This makes sense: the gas is incredibly lightweight compared to its pressure, so the pressure force moves the gas very easily. Equivalently, the photon speeds are, of course, c – hence vs ~ c.

In summary: we have an extremely lightweight foggy gas of brilliant light and a trace of particles, all behaving as a single fluid with modest pressure and very high sound speed. With light dominating the pressure, the primordial sound waves can also be thought of as great surges in light’s brilliance.

After recombination, photons and particles decouple; the pressure drops by 10-9 and sound ceases. The acoustic era only lasts 400 kyr, and is then over.

Akustik Ära

Page 49: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 49

A too-quick answer might be: “of course there’s sound, it was a “big bang” after all, and the explosion must have been very loud”. This is completely wrong. The big bang was not an explosion into an atmosphere; it was an expansion of space itself. The Hubble law tells us that every point recedes from every other – there is no compression – no sound. Paradoxically, the big bang was totally silent!

How, then, does sound get started? Later we’ll learn that although the Universe was born silent, it was also born very slightly lumpy. On all scales, from tiny to gargantuan, there are slight variations in density, randomly scattered, everywhere – a 3D mottle of slight peaks and troughs in density.We’ll learn how this roughness grows over time, but for now just accept this framework. The most important component for generating sound is dark matter. Recall that after equality (m = r at 57 kyr) dark matter dominates the density, so it determines the gravitational landscape.

Where the sound comes from?

Page 50: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 50

Everywhere, the photon-baryon gas feels the pull of dark matter. How does it respond? It begins to “fall” towards the over-dense regions, and away from the under-dense regions. Soon, however, its pressure is higher in the over-dense regions and this halts and reverses the motion; pushing the gas back out. This time it overshoots, only to turn around and fall back in again. The cycle repeats, and we have a sound wave! The situation resembles a spherical organ pipe: gas bounces in and out of a roughly spherical region. [One caveat: “falling in” and “bouncing out” of the regions is only relative to the overall expansion, which continues throughout the acoustic era.]Notice there is a quite different behavior between dark matter and the photon-baryon gas. Because the dark matter has no pressure (it interacts with nothing, not even itself), it is free to clump up under its own gravity. In contrast, the photon-baryon gas has pressure, which tries to keep it uniform (like air in a room). However, in the lumpy gravitational field of dark matter, it falls and bounces this way and that in a continuing oscillation.

Where the sound comes from?

Page 51: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 51

Consider listening to a concert on the radio:Bow+string microphone

& amplifier& antenna

ariel &amplifierspeakers

soundsound radio wavesradio waves soundsound youryourearsears

Concert hallConcert hall ListenerListenerfew 100 miles

few µsec delay

gravity +hills/valleys

soundwavesglowglow

telescope computerspeakers

soundsound lightlight soundsound youryourearsearsmicrowavesmicrowaves

Big BangBig Bang ListenerListenervery long way !

14 Gyr delay !

How does sound get to us ?How does sound get to us ?

Page 52: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 52

Since looking in anyany direction looks back to the foggy wall we see the wall in allall directions. the entire skyentire sky glows with microwaves the flash from the Big Bang is all around usall around us!

Near

Far

Now red-shift Then

Big BangBig Bang

Far NearThen red-shift Now

Big

Ban

gB

i g B

ang

Big BangBig Bang

The Big Bang is all around us !The Big Bang is all around us !

Page 53: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 53

c) it then falls back in again to make a second compression

rarefaction rarefactioncompressiondim dim

bright

a) gas falls into valleys, gets compressed, & glows brighter

rarefactioncompressioncompression

dim

brightbrightb) it overshoots, then rebounds out, is rarefied, & gets dimmer

the oscillation continues the oscillation continues sound waves are createdsound waves are created

• Gravity drives the growth of sound in the early Universe. • The gas must also feel pressure, so it rebounds out of the valleys.• We see the bright/dim regions as patchiness on the CMB.

The first sound wavesThe first sound waves

Page 54: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 54

Akustische Wellen im frühen Universum

Page 55: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 55

http://astron.berkeley.edu/~mwhite/sciam03_short.pdf

Druck der akust. Welle und Gravitation verstärken die Temperaturschwankungen in der Grundwelle (im ersten Peak)

Page 56: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 56

Druck der akust. Welle und Gravitation wirken gegeneinander in der Oberwelle ( im zweiten Peak)

Page 57: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 57

Open : Ω= 0.8

Flat : Ω= 1.0

Closed: Ω=1.2

Low pitch High pitchLong wavelength Short wavelength

Geometry of the Universe

Page 58: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 58

2% atoms

4% atoms

8% atoms

Low pitch High pitchLong wavelength Short wavelength

Atomic content of the Universe

Page 59: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 59

Line

wea

ver 2

003

Frequency (in Hz)

A220 Hz

CMB Sound Spectrum

Click forsound

acoustic

non-acoustic

Page 60: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 60

Akustische Peaks von WMAP

Page 61: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 61

Kugelflächenfunktionen

Jede Funktion kann in orthogonale Kugelflächenfkt. entwickelt werden. Große Werte von l beschreiben Korrelationen unter kleinen Winkel.

l=4

l=8

l=12

Page 62: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 62

• Temperaturverteilung ist Funktion auf Sphäre: ΔT(θ,φ) bzw. ΔT(n) = ΔΘ(n) T T n=(sinθcosφ,sinθsinφ,cosθ)

• Autokorrelationsfunktion:

C(θ)=<ΔΘ(n1)∙ΔΘ(n2)>|n1-n2|

=(4π)-1 Σ∞l=0 (2l+1)ClPl(cosθ)

• Pl sind die Legendrepolynome:

Pl(cosθ) = 2-l∙dl/d(cos θ)l(cos²θ-1)l.

• Die Koeffizienten Cl bilden das Powerspektrum von ΔΘ(n).

mit cosθ=n1∙n2

Vom Bild zum Powerspektrum

Page 63: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 63

Das Leistungsspektrum (power spectrum)

ω = vk = v 2/λ

Page 64: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 64

Temperaturschwankungen als Fkt. des Öffnungswinkels

Θ 200/l

Page 65: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 65

WMAP(2003)

Planck(2006)

ACBARCBI

BOOMERANGDASI

COBE(1992)

Line

wea

ver 2

003

Frequency (on the sky)

CMB Angular Power Spectrum

current best data×( model)

Page 66: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 66

Position des ersten Peaks

Berechnung der Winkel, worunter mandie maximale Temperaturschwankungen der Grundwelle beobachtet:

Maximale Ausdehnung einer akust. Wellezum Zeitpunkt trec: cs * trec (1+z)Beobachtung nach t0 =13.8 109 yr.Öffnungswinkel θ = cs * trec * (1+z) / c*t0

Mit (1+z)= 3000/2.7 =1100 und trec = 3,8 105 yr und Schallgeschwindigkeit cs=c/3 für ein relativ. Plasma folgt: θ = 0.0175 = 10 (plus (kleine) ART Korrekt.)

Beachte: cs2 ≡ dp/d = c2/3, da p= 1/3 c2

Raum-Zeit x

tInflation

Entkopplung

max. T / T unter 10

Page 67: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 67

Temperaturanisotropie der CMB

Page 68: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 68

Position des ersten akustischen Peaks bestimmt Krümmung des Universums!

Page 69: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 69

= x/S(t) = x(1+z)

Raum-Zeit xt

= t / S(t) = t (1+z)

Conformal Space-Time(winkelerhaltende Raum-Zeit)

conformal=winkelerhaltendz.B. mercator Projektion

Page 70: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 70

CMB polarisiert durch Streuung an Elektronen (Thompson Streuung)

Kurz vor Entkoppelung:Streuung der CMB Photonen.Nachher nicht mehr, da mittlerefreie Weglange zu groß.Lange vor der Entkopplung:Polarisation durch Mittelungüber viele Stöße verloren.

Nach Reionisation der Baryonendurch Sternentstehung wieder Streuung.

Erwarte Polarisation also kurznach dem akust. Peak (l = 300)und auf großen Abständen (l < 10)

Page 71: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 71

Entwicklung des Universums

Page 72: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 72

If it is not dark,it does not matter

Woher kennt man diese Verteilung?

Page 73: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 73

Beobachtungen:Ω=1, jedochAlter >>2/3H0

Alte SN dunklerals erwartet

Page 74: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 74

Hubble Diagramm aus SN Ia Daten

Abstand aus dem HubbleschenGesetz mit Bremsparameterq0=-0.6 und H=0.7 (100 km/s/Mpc)

z=1-> r=c/H(z+1/2(1-q0)z2)= 3.108/(0.7x105 )(1+0.8) Mpc = 7 Gpc Abstand aus SN1a Helligkeit mmit absoluter Helligkeit M=-19.6:

m=24.65 und log d=(m-M+5)/5) ->Log d=(24.65+19.6+5)/5=9.85 = 7.1 Gpc

Page 75: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 75

Erste Evidenz für Vakuumenergie

Page 76: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 76

Zeit

Perlmutter Perlmutter 20032003

AbstandAbstand

Page 77: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 77

SNIa compared with Porsche rolling up a hill

SNIa data very similar to a dark Porsche rolling up a hill and reading speedometer regularly, i.e. determining v(t), which canbe used to reconstruct x(t) =∫v(t)dt. (speed distance, for universe Hubble law)This distance can be compared laterwith distance as determined from the luminosity of lamp posts (assuming same brightness for all lamp posts)(luminosity distance, if SN1a treated as ‘standard’ candles with known luminosity)

If the very first lamp posts are further away than expected, the conclusion must be that the Porsche instead of rolling up the hill used its engine, i.e. additional acceleration instead of decelaration only.(universe has additional acceleration (by dark energy) instead of decelaration only)

Page 78: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 78

SN1a originates from double star and explodes after reachingChandrasekhar mass limit

SN Type 1a wachsen bis Chandrasekhar GrenzeDann Explosion mit ≈ konstanter Leuchtkraft

Page 79: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 79

Vergleich mit den SN 1a Daten

SN1a empfindlich für Beschleunigung, d.h. - m

CMB empfindlich für totale Dichte d.h. + m

= (SM+ DM)

Page 80: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 80

Present and projected Results from SN1a

SN Ia & Ω0=1 & w=-1: Ωm = 0.28 ± 0.05

Exp

ecta

tions

from

SN

AP

sat

ellit

e

Sn Ia nur empfindlich für Differenz der Anziehung durch Masse und Abstoßung durch Vakuumenergie

Page 81: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 81

Combination of Observables

The cosmological parameters describing the best fitting FRW model are:Total density: Ω0 = 1.02 ± 0.02Vacuum energy density: ΩΛ = 0.73 ± 0.04Matter density: Ωm = 0.27 ± 0.04Baryon density: Ωb = 0.044 ± 0.004Neutrino density: Ων < 0.0147 (@ 95%CL)Hubble constant: h = 0.71 ± 0.04Equation of state: w < -0.71 (@ 95%CL)

Age of the universe: t0 = (13.7 ± 0.2) GyrBaryon/Photon ratio: η = (6.1 ± 0.3) 10-10

Spe

rgel

et a

l. as

tro-p

h/03

0220

9B

enne

tt et

al.

astro

-ph/

0302

208

Page 82: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 82

The cosmological parameters describing the best fitting FRW model are:Total density: Ω0 = 1.02 ± 0.02Vacuum energy density: ΩΛ = 0.73 ± 0.04Matter density: Ωm = 0.27 ± 0.04Baryon density: Ωb = 0.044 ± 0.004Neutrino density: Ων < 0.0147 (@ 95%CL)Hubble constant: h = 0.71 ± 0.04Equation of state: w < -0.71 (@ 95%CL)

Age of the universe: t0 = (13.7 ± 0.2) GyrBaryon/Photon ratio: η = (6.1 ± 0.3) 10-10

Resultate aus der Anisotropie der CMB kombiniertmit Abweichungen des Hubbleschen Gesetzes

Kosmologie wurde mit WMAP Satellit Präzisionsphysik in 2003

Page 83: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 83

Zum Mitnehmen

Die CMB gibt ein Bild des frühen Universums 380.000 yr nach dem Urknall und zeigtdie Dichteschwankungen T/T, woraus später die Galaxien entstehen.

Die CMB zeigt dass

1. das das Univ. am Anfang heiß war, weil akustische Peaks, entstanden durch akustische stehende Wellen in einem heißen Plasma, entdeckt wurden

2. die Temperatur der Strahlung im Universum 2.7 K ist wie erwartet bei einem EXPANDIERENDEN Univ. mit Entkopplung der heißen Strahlung und Materie bei einer Temp. von 3000 K oder z=1100 (T 1/(1+z !)

3. das Univ. FLACH ist, weil die Photonen sich seit der letzten Streuung zum Zeitpunkt der Entkopplung (LSS = last scattering surface) auf gerade Linien bewegt haben (in comoving coor.)

Page 84: 30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 Vorlesung 6: Roter Faden: 1.Cosmic Microwave Background radiation (CMB)

30.11.2007 Kosmologie, WS 07/08, Prof. W. de Boer 84

If it is not dark,it does not matter

Zum Mitnehmen