2/27/2018 ece 5322 st century electromagneticsemlab.utep.edu/ee5390em21/lecture 13 --...

31
2/27/2018 1 ECE 5322 21 st Century Electromagnetics Instructor: Office: Phone: E‐Mail: Dr. Raymond C. Rumpf A‐337 (915) 747‐6958 [email protected] Lecture #13 Lecture 13 1 Lecture Outline Introduction to Metamaterials Resonant Metamaterials Left-handed metamaterials Refractive index less than one Biisotropic and bianisotropic metamaterials Nonresonant Metamaterials Anisotropic metamaterials Hyperbolic metamaterials Lecture 13 Slide 2

Upload: phamhanh

Post on 26-Jun-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 2/27/2018 ECE 5322 st Century Electromagneticsemlab.utep.edu/ee5390em21/Lecture 13 -- Metamaterials.pdf · 2/27/2018 1 ECE 5322 21stCentury Electromagnetics Instructor: Office: Phone:

2/27/2018

1

ECE 5322 21st Century Electromagnetics

Instructor:Office:Phone:E‐Mail:

Dr. Raymond C. RumpfA‐337(915) 747‐[email protected]

Lecture #13

Lecture 13 1

Lecture Outline

• Introduction to Metamaterials

• Resonant Metamaterials– Left-handed metamaterials

– Refractive index less than one

– Biisotropic and bianisotropic metamaterials

• Nonresonant Metamaterials– Anisotropic metamaterials

– Hyperbolic metamaterials

Lecture 13 Slide 2

Page 2: 2/27/2018 ECE 5322 st Century Electromagneticsemlab.utep.edu/ee5390em21/Lecture 13 -- Metamaterials.pdf · 2/27/2018 1 ECE 5322 21stCentury Electromagnetics Instructor: Office: Phone:

2/27/2018

2

Introduction to Metamaterials

What are Metamaterials?

• No universally accepted definition

• Themes of a definition– Engineered composites

– Properties are derived from their physical structure, not their chemistry

– Exhibit properties not observed in nature.

– Exhibit properties not observed in their constituent materials.

• A composite material that is purposely engineered to provide material properties that are not otherwise attainable with ordinary materials.

Slide 4Lecture 13

Page 3: 2/27/2018 ECE 5322 st Century Electromagneticsemlab.utep.edu/ee5390em21/Lecture 13 -- Metamaterials.pdf · 2/27/2018 1 ECE 5322 21stCentury Electromagnetics Instructor: Office: Phone:

2/27/2018

3

Types of Metamaterials

Electromagnetic Metamaterials

Resonant Nonresonant

• Period is ~λ/5•Oscillating currents emulate atomic resonances

• Period can be much less than λ•Nothing resonates or scatters from unit cells

Slide 5Lecture 13

General Comments on Nonresonant Metamaterials

• Greatest potential to be broadband

• Greatest potential for wide field-of-view

• Smallest feature sizes (very subwavelength)

• Greatest tolerance to structural deformations

• Fewer “magical” properties than resonant metamaterials.

Lecture 13 6

Page 4: 2/27/2018 ECE 5322 st Century Electromagneticsemlab.utep.edu/ee5390em21/Lecture 13 -- Metamaterials.pdf · 2/27/2018 1 ECE 5322 21stCentury Electromagnetics Instructor: Office: Phone:

2/27/2018

4

Resonant Metamaterials

Dielectric Response of Ordinary Materials

Lorentz Oscillator Model

Mechanisms Producing Electric Polarization

C. Balanis, Advanced Engineering Electromagnetics, (Wiley, New York, 1989).

Slide 8Lecture 13

Page 5: 2/27/2018 ECE 5322 st Century Electromagneticsemlab.utep.edu/ee5390em21/Lecture 13 -- Metamaterials.pdf · 2/27/2018 1 ECE 5322 21stCentury Electromagnetics Instructor: Office: Phone:

2/27/2018

5

Magnetic Response of Ordinary Materials

Equilibrium State Polarized StateB

NucleusElectron

Magnetic Dipole

Slide 9Lecture 13

Lorentz Oscillator Model for Dielectrics

2202

r rm m m r qE

t t

Governing Equation

2

2 20

22

0

1 pr

p

j

Nq

m

applied electric force

restoring forceloss

inertia

Resulting Dielectric Function

Slide 10Lecture 13

Page 6: 2/27/2018 ECE 5322 st Century Electromagneticsemlab.utep.edu/ee5390em21/Lecture 13 -- Metamaterials.pdf · 2/27/2018 1 ECE 5322 21stCentury Electromagnetics Instructor: Office: Phone:

2/27/2018

6

Drude Model for Metals

2202

r rm m m r

t t

qE

Governing Equation

2

2

22

0

1 pr

p

j

Nq

m

Resulting Dielectric Function

Electrons are not bound so restoring force is zero.

Slide 11Lecture 13

Artificial Permittivity,

Frequency (GHz)

D. Schurig, J. J. Mock, D. R. Smith, "Electric‐field‐coupled resonators for negative permittivity metamaterials," Appl. Phys. Lett. 88, 041109 (2006).

Slide 12Lecture 13

Page 7: 2/27/2018 ECE 5322 st Century Electromagneticsemlab.utep.edu/ee5390em21/Lecture 13 -- Metamaterials.pdf · 2/27/2018 1 ECE 5322 21stCentury Electromagnetics Instructor: Office: Phone:

2/27/2018

7

Artificial Permeability,

J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, "Magnetism from Conductors and Enhanced Nonlinear Phenomena," IEEE Trans. Microwave Theory and Techniques 47(11), 2075–2084 (1999).

Slide 13Lecture 13

Artificial Plasma Frequency

J. B. Pendry, A. J. Holden, W. J. Stewart, I Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures," Phys. Rev. Lett. 76, 4773‐4776 (1996).

2

eff 2

2 20 eff

eff

22

,eff 2

ln2 2

2

ln 2p

r NN

a

r N q am

r

c

a a r

Quantities previously related to the atoms and molecules can now be engineered through structural dimensions.

Slide 14Lecture 13

Page 8: 2/27/2018 ECE 5322 st Century Electromagneticsemlab.utep.edu/ee5390em21/Lecture 13 -- Metamaterials.pdf · 2/27/2018 1 ECE 5322 21stCentury Electromagnetics Instructor: Office: Phone:

2/27/2018

8

Categorizing Metamaterials Based on Sign of Effective Properties

Slide 15Lecture 13

Double Positive (DP)

,

Single Negative (SN)

, or ,

Double Negative (DN)

,

• Ordinary effective media• Right‐handed media (RHM)

• Left‐handed media (LHM)• Negative refractive index (NRI)• Negative thickness devices

n < 1.0

1.0n • Faster than light propagation• Invisibility and cloaking• Angle insensitive devices

• Can be left‐handed or right‐handed• Artificial metals and magnetic conductors

Left-Handed Metamaterials

Page 9: 2/27/2018 ECE 5322 st Century Electromagneticsemlab.utep.edu/ee5390em21/Lecture 13 -- Metamaterials.pdf · 2/27/2018 1 ECE 5322 21stCentury Electromagnetics Instructor: Office: Phone:

2/27/2018

9

What Happens When Both and are Negative?

V. G. Veselago, Sov. Phys. Usp., vol. 10, pp. 509, 1968.

What happens when both μ and ε are negative?

E j H

H j E

E j H

H j E

The system is left handed!

k E H k E H

E, H, and k form a “left‐handed” system

Slide 17Lecture 13

LHMs Have a Negative Refractive Index

y

x

1. Wave is incident from ordinary right‐handed material.

2. Transverse component of k is continuous across interface.

3. In the left‐handed material, ky

must be negative to be consistent with sign convention.

4. Index ellipsoid for left‐handed material must be negative, implying that the refractive index is negative.

5. Causality requires Poyntingvector to correspond to “forward” travelling energy.

Slide 18Lecture 13

Page 10: 2/27/2018 ECE 5322 st Century Electromagneticsemlab.utep.edu/ee5390em21/Lecture 13 -- Metamaterials.pdf · 2/27/2018 1 ECE 5322 21stCentury Electromagnetics Instructor: Office: Phone:

2/27/2018

10

Conditions for Negative Refractive Index

Evanescent

Evanescent

Im k

Re kPropagatin

g Wave

s

Decaying

Growing

Propagating Waves

Slide 19Lecture 13

How to Realize a Left-Handed Metamaterial

Smith et al., Phys. Rev. Lett. 84, 4184–4187 (2000).

Slide 20Lecture 13

2.2

Page 11: 2/27/2018 ECE 5322 st Century Electromagneticsemlab.utep.edu/ee5390em21/Lecture 13 -- Metamaterials.pdf · 2/27/2018 1 ECE 5322 21stCentury Electromagnetics Instructor: Office: Phone:

2/27/2018

11

Low Loss LHMs

Lecture 13 21

The negative permittivity and permeability due to electromagnetic resonance can be prohibitively lossy.

Approaches for minimizing loss:

1. Optimizing Geometry – Limited success so far.2. Incorporate Gain – can achieve zero 

loss over broad frequency range, but difficult, complex, and expensive to realize in practice.

3. Electromagnetically Induced Transparency (EIT) – Very low loss, but do not maintain negativity in the real part of  and .  If realized, they are narrowband and involve using two different types of metals.

4. Alternate designs.

Optics Express, Vol. 19, Issue 13, pp. 12688-12699 (2011).

gain layer

Phys. Rev. Lett., Vol. 102, 051901, 2009.

k

E

H

Ant. Prop. Symp., pp. 1-4, 2010.

PIERS Online, Vol. 3, No. 5, 2007.

Doppler Shift in LHMs

Doppler shift is reversed in a left‐handed metamaterial.

Right‐handed material Left‐handed material

Slide 22Lecture 13

Page 12: 2/27/2018 ECE 5322 st Century Electromagneticsemlab.utep.edu/ee5390em21/Lecture 13 -- Metamaterials.pdf · 2/27/2018 1 ECE 5322 21stCentury Electromagnetics Instructor: Office: Phone:

2/27/2018

12

Cerenkov Radiation in LHMs

Cerenkov radiation is reversed.

e v c

n

n

e v c

Slide 23Lecture 13

Refraction in LHMs

Left‐handed materials produce negative refraction.

Slide 24Lecture 13

Page 13: 2/27/2018 ECE 5322 st Century Electromagneticsemlab.utep.edu/ee5390em21/Lecture 13 -- Metamaterials.pdf · 2/27/2018 1 ECE 5322 21stCentury Electromagnetics Instructor: Office: Phone:

2/27/2018

13

Evanescent Waves in LHMs

Evanescent fields grow in amplitude.

0 0

j k jk nz k nz jk nzE z E e E e e

Evanescent “wave” in ordinary material

0 0

j k jk n z k nz jk nzE z E e E e e

Evanescent “wave” in negative‐index material

oscillating component

evanescent component (decays)

oscillating component

evanescent component (grows)

Slide 25Lecture 13

Perfect Imaging and Super Lenses

Negative Refraction

Growing Evanescent Fields

W. Park, J. Kim, MRS bulletin Oct 2008

N. Fang et al, Science 308, 534–537 (2005)

Slide 26Lecture 13

Page 14: 2/27/2018 ECE 5322 st Century Electromagneticsemlab.utep.edu/ee5390em21/Lecture 13 -- Metamaterials.pdf · 2/27/2018 1 ECE 5322 21stCentury Electromagnetics Instructor: Office: Phone:

2/27/2018

14

Refractive Index Less Than One

Cloaking and Invisibility

Slide 28Lecture 13Duke University

Page 15: 2/27/2018 ECE 5322 st Century Electromagneticsemlab.utep.edu/ee5390em21/Lecture 13 -- Metamaterials.pdf · 2/27/2018 1 ECE 5322 21stCentury Electromagnetics Instructor: Office: Phone:

2/27/2018

15

Zero-Thickness Devices

Slide 29Lecture 13

Bi-Isotropic and Bi-Anisotroic

Metamaterials

Page 16: 2/27/2018 ECE 5322 st Century Electromagneticsemlab.utep.edu/ee5390em21/Lecture 13 -- Metamaterials.pdf · 2/27/2018 1 ECE 5322 21stCentury Electromagnetics Instructor: Office: Phone:

2/27/2018

16

Lecture 13 31

The Basic Bianisotropic Element (1 of 4)

A helix is one of the most basic and easiest to understand elements that produces a bianisotropicresponse.

Lecture 13 32

The Basic Bianisotropic Element (2 of 4)

Suppose an electric field is applied to the helix.

Page 17: 2/27/2018 ECE 5322 st Century Electromagneticsemlab.utep.edu/ee5390em21/Lecture 13 -- Metamaterials.pdf · 2/27/2018 1 ECE 5322 21stCentury Electromagnetics Instructor: Office: Phone:

2/27/2018

17

Lecture 13 33

The Basic Bianisotropic Element (3 of 4)

Charge along the wire will be displaced due to the electric field.

+++++

- - - - -

+++++

- - - - -

Lecture 13 34

The Basic Bianisotropic Element (4 of 4)

The displaced charge induces an electric dipole D, while the current produced by the displaced charge induces a magnetic dipole B.

An E has induced a B!

Page 18: 2/27/2018 ECE 5322 st Century Electromagneticsemlab.utep.edu/ee5390em21/Lecture 13 -- Metamaterials.pdf · 2/27/2018 1 ECE 5322 21stCentury Electromagnetics Instructor: Office: Phone:

2/27/2018

18

Lecture 13 35

Arrangement of Elements

An array of aligned helices produces a 

bianisotropic medium.

An array of helices in random orientation produces an ordinary isotropic medium because the dipoles cancel.

Lecture 13 36

Origin of Biisotropy and BianisotropyBiisotropy and bianisotropy occurs whenever a metamaterial lacks a center of inversion symmetry along the direction of propagation.

If this SRR had a split at the bottom and top, it would exhibit ordinary anisotropy.

Kriegler, Christine Eliane, et al. "Bianisotropic photonic metamaterials." Selected Topics in Quantum Electronics, IEEE Journal of 16.2 (2010): 367‐375.

Page 19: 2/27/2018 ECE 5322 st Century Electromagneticsemlab.utep.edu/ee5390em21/Lecture 13 -- Metamaterials.pdf · 2/27/2018 1 ECE 5322 21stCentury Electromagnetics Instructor: Office: Phone:

2/27/2018

19

Lecture 13 37

Fishnet Metamaterial

Ku, Zahyun, Jingyu Zhang, and S. R. J. Brueck. "Bi‐anisotropy of multiple‐layer fishnet negative‐index metamaterials due to angled sidewalls." Optics express 17.8 (2009): 6782‐6789.

NOT BI

BI

NonresonantAnisotropic

Metamaterials

Page 20: 2/27/2018 ECE 5322 st Century Electromagneticsemlab.utep.edu/ee5390em21/Lecture 13 -- Metamaterials.pdf · 2/27/2018 1 ECE 5322 21stCentury Electromagnetics Instructor: Office: Phone:

2/27/2018

20

How to Produce Artificial Anisotropy in Metamaterials

Slide 39Lecture 13

E‐Mode (TE) H‐Mode (TM)

E H

Recall from a previous lecture that subwavelength gratings are artificially anisotropic media.

For metamaterials, we simply extend this concept to 3D structures.

Positive and Negative Birefringence

Lecture 13 40

For uniaxial lattices, we have only an ordinary and an extraordinary dielectric constant, o and e.

Here the birefringence is defined as the difference between the extraordinary and ordinary dielectric constants.

e o We see that it is possible to have both a positive and a negative birefringence.

negative birefringence 0

positive birefringence 0

e o

e o

Page 21: 2/27/2018 ECE 5322 st Century Electromagneticsemlab.utep.edu/ee5390em21/Lecture 13 -- Metamaterials.pdf · 2/27/2018 1 ECE 5322 21stCentury Electromagnetics Instructor: Office: Phone:

2/27/2018

21

Metamaterials with Positive and Negative Birefringence

Lecture 13 41

Positive Birefringence

High Low

Low These are equal due to symmetry.  Therefore, these are the ordinary axes.

Anisotropy Cheat Sheet

High  Low 

Negative Birefringence

Low High

High These are equal due to symmetry.  Therefore, these are the ordinary axes.

Smaller 

Larger 

e o

e o

k

Classes of Anisotropic Metamaterials

Lecture 13 42

Page 22: 2/27/2018 ECE 5322 st Century Electromagneticsemlab.utep.edu/ee5390em21/Lecture 13 -- Metamaterials.pdf · 2/27/2018 1 ECE 5322 21stCentury Electromagnetics Instructor: Office: Phone:

2/27/2018

22

Cutoff Frequency

Lecture 13 43

Anisotropic metamaterials possess a cutoff frequency.  They must operate below this frequency to ensure the structure is nonresonant.

E mode cutoff

H mode cutoff

Artificial anisotropy requires both the E and H modes to be nonresonant.  The cutoff frequency is taken as the lowest cutoff between the two.  In this case, it is he H mode.

device cutofffrequency

nonresonant regionnonresonantregion

inhomo

homo

homo

1

V

n ndvV

homo

1 1 1

V

dvn V n

Design of Negative Uniaxial Metamaterials by

Lecture 13 44

Limiting Values

min max

1 1 1min 1 2

max 1 2

1

1

f f

f f

Strength of Anisotropy

2

1 2max min

1 2 1f f

Optimum Fill Fraction for 1

max

2 1

max 1 2 1 2

1

1

2

f

Negative Uniaxial Anisotropy

0 0

0 0

0 0

o

o o e

e

max min o e

Page 23: 2/27/2018 ECE 5322 st Century Electromagneticsemlab.utep.edu/ee5390em21/Lecture 13 -- Metamaterials.pdf · 2/27/2018 1 ECE 5322 21stCentury Electromagnetics Instructor: Office: Phone:

2/27/2018

23

Design of Negative Uniaxial Metamaterials by TO

Lecture 13 45

Coordinate Transform

1

x x

y y a

z z a

Negative Uniaxial Medium

0 0

0 0

0 0

a

a

a

TO Parameters

o e

o e o e

a a

a

Optimization of in a Positive Uniaxial Metamaterial

Slide 46Lecture 13

Best geometry is a hexagonal array of hexagonal shaped rods with high r surrounded by low r.

Hexagonal shaped rods is more difficult to manufacture.

A close second is a hexagonal array of circular rods.

Much easier to manufacture.

C. R. Garcia, J. Correa, D. Espalin, J. H. Barton, R. C. Rumpf, R. Wicker, V. Gonzalez, "3D Printing of Anisotropic Metamaterials," PIER Lett, Vol. 34, pp. 75‐82, 2012.

Fractal unit cells may provide slightly higher anisotropy, but will be more difficult to manufacture.

Page 24: 2/27/2018 ECE 5322 st Century Electromagneticsemlab.utep.edu/ee5390em21/Lecture 13 -- Metamaterials.pdf · 2/27/2018 1 ECE 5322 21stCentury Electromagnetics Instructor: Office: Phone:

2/27/2018

24

Optimization of of a Positive Uniaxial Metamaterial

Slide 47Lecture 13

• Support rods decrease the anisotropy, but may be needed for support.• Radius of cylinders should be 42% of lattice constant.  

This seems to be consistent regardless of dielectric constant used.• It may be true that uniaxial symmetry provides the strongest anisotropy.

C. R. Garcia, J. Correa, D. Espalin, J. H. Barton, R. C. Rumpf, R. Wicker, V. Gonzalez, "3D Printing of Anisotropic Metamaterials," PIER Lett, Vol. 34, pp. 75-82, 2012.

Study of Strength of Anisotropy in Uniaxial Structures

Lecture 13 48

Fill Factor, f

,effr

max f

o

e

Fill Factor, f

,effr

max f

o

e

Lower Dielectric Contrast Higher Dielectric Contrast

Lower Dielectric Contrast

,effr

max f

eo

,effr

Fill Factor, f Fill Factor, f

e

omax

f

Higher Dielectric Contrast

Page 25: 2/27/2018 ECE 5322 st Century Electromagneticsemlab.utep.edu/ee5390em21/Lecture 13 -- Metamaterials.pdf · 2/27/2018 1 ECE 5322 21stCentury Electromagnetics Instructor: Office: Phone:

2/27/2018

25

Lecture 13 49

Optimizing a in Negative Uniaxial MetamaterialsApplying Effective Medium Theory

e 1 2

1 1f f

o 1 21f f

TO Parameters

1 21 1

1 2

2

1 2

1 2

1

1

1 1

f f

f f

a f f

Maximizing a

opt 0.5f

opt 1 2

1 2opt

1 22

f

a f

This means that

optimized SVAMscan be designed without knowing 1 and 2.

a

Lecture 13 50

Nonmagnetic SVAMsResult Provided by TO

x x

y y

z z a

0 0

0 0

0 0

a

a

a

Note that to realize a stretching factor of a, permeability and permittivity must be equal.

Nonmagnetic Result?

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

a

a

a

Maybe ???a a

Page 26: 2/27/2018 ECE 5322 st Century Electromagneticsemlab.utep.edu/ee5390em21/Lecture 13 -- Metamaterials.pdf · 2/27/2018 1 ECE 5322 21stCentury Electromagnetics Instructor: Office: Phone:

2/27/2018

26

Anisotropic Metamaterials Manufactured by 3D Printing

Slide 51Lecture 13

C. R. Garcia, J. Correa, D. Espalin, J. H. Barton, R. C. Rumpf, R. Wicker, V. Gonzalez, "3D Printing of Anisotropic Metamaterials," PIER Lett, Vol. 34, pp. 75-82, 2012.

Anisotropic Metamaterials Fabricated by Autocloning

Slide 52Lecture 13

Page 27: 2/27/2018 ECE 5322 st Century Electromagneticsemlab.utep.edu/ee5390em21/Lecture 13 -- Metamaterials.pdf · 2/27/2018 1 ECE 5322 21stCentury Electromagnetics Instructor: Office: Phone:

2/27/2018

27

Some Applications

Lecture 13 53

O. Takayama, et al, “Dyakonov Surface Waves: A Reivew,” Electromagnetics 28, 126-145 (2008).

Dyakonov Surface Waves Near‐Field Sculpting

Hyperbolic Metamaterials

Page 28: 2/27/2018 ECE 5322 st Century Electromagneticsemlab.utep.edu/ee5390em21/Lecture 13 -- Metamaterials.pdf · 2/27/2018 1 ECE 5322 21stCentury Electromagnetics Instructor: Office: Phone:

2/27/2018

28

Recall the Dispersion Surfaces of Uniaxial Crystals

Lecture 13 55

Dielectric Tensor

0 0

0 0

0 0

o

o

e

Dispersion Relation (Ellipsoids)

22 2 2

0

x y z

e o

k k k

c

These ellipsoids are closed surfaces.  Possible values of k are constrained.

Hyperbolic Tensors

Lecture 13 56

Suppose the tensor elements o and e had opposite sign.

0o e

22 2 2

0

x y z

e o

k k k

c

These hyperbolas are open surfaces.  Possible values of k extend to infinity.

The dispersion relation now describes open surfaces that extend to infinity.

0, 0o e 0, 0o e

Page 29: 2/27/2018 ECE 5322 st Century Electromagneticsemlab.utep.edu/ee5390em21/Lecture 13 -- Metamaterials.pdf · 2/27/2018 1 ECE 5322 21stCentury Electromagnetics Instructor: Office: Phone:

2/27/2018

29

What is New and Magical?

Lecture 13 57

Values of k in hyperbolic materials can go to infinity.

This means there can exist propagating waves in hyperbolic materials with extremely large values of k.  For a given frequency, these will have extremely small wavelength.

These waves would be cutoff, or evanescent, in ordinary materials.

These “high‐k” waves enable many things.

2 means 0k k

Types of Hyperbolic Metamaterials

Lecture 13 58

0 0

0 0

0 0

a

b

c

All waves evanescent.Not really hyperbolic.

0 0 0 0 0 0

0 0 or 0 0 or 0 0

0 0 0 0 0 0

a a a

b b b

c c c

Low loss, good impedance match to air because they are predominantly dielectric like.

Effective Metals

Type I

0 0 0 0 0 0

0 0 or 0 0 or 0 0

0 0 0 0 0 0

a a a

b b b

c c c

High loss, high impedance mismatch because they are predominantly metal like.

Type II

Page 30: 2/27/2018 ECE 5322 st Century Electromagneticsemlab.utep.edu/ee5390em21/Lecture 13 -- Metamaterials.pdf · 2/27/2018 1 ECE 5322 21stCentury Electromagnetics Instructor: Office: Phone:

2/27/2018

30

How to Make Hyperbolic Metamaterials

Lecture 13 59

We know that in metals the dielectric constant is negative below the plasma frequency.

This means that a negative dielectric constant implies the movement of electrons is constrained in that direction.

In hyperbolic materials, not all of the tensor elements are negative.  This means we have to break the continuity of the metal in the direction of positive tensor elements.

So, any structure where metal is continuous on some directions but not others will be hyperbolic.

Layers of metal‐dielectric

Hyper lens Multilayer fishnet

Array of nanorods

Array of metal‐dielectric 

nanopyramids

Graphenemetamaterial

A. Poddubny, I. Iorsh, P. Belov, Y. Kivshar, “Hyperbolic metamaterials,” Nature Photonics, vol. 7, pp. 958‐967, 2013.

Phenomena and Applications

• Negative Refraction (dispersion effect, not NRI)• Lensing• Spontaneous emission engineering (Purcell-factor

enhancement)• Nanophotonics• Minaturization• Tunable active devices• Heat transfer engineering

– Efficiency can exceed the Stefan-Boltazmann law– Broadband emission can exceed the Planck law.

Lecture 13 60

Page 31: 2/27/2018 ECE 5322 st Century Electromagneticsemlab.utep.edu/ee5390em21/Lecture 13 -- Metamaterials.pdf · 2/27/2018 1 ECE 5322 21stCentury Electromagnetics Instructor: Office: Phone:

2/27/2018

31

Future Steps

• Wide spectral and wave vector ranges.

• Losses must be mitigated.

• Performance should be maintained for different orientations and polarizations.

• Improved methods for coupling from air into the hyperbolic metamaterials

Lecture 13 61