2011-2 qt siesta tutorial-1

15
SIESTA Tutorial #1 Yong-Hoon Kim & Han Seul Kim Graduate School of EEWS Korea Advanced Institute of Science & Technology [email protected] EEW522 Quantum Transport (Fall 2011) Y.-H. Kim @ KAIST EEWS EEW522 Fall 2011 EEW522 Fall 2011 Outline & References Plan for this tutorial Lecture 1: SIESTA – Based on SIESTA school @ Barcelona 2007 Lecture 2: TranSIESTA – Based on SIESTA school @ Barcelona 2009 References SIESTA homepage (http://www.icmab.es/siesta/) “Documentation” “Tutorials” TranSIESTA school 2009 (http://wiki.tstutorial.dreamhosters.com) Exercises available at .. quest.kaist.ac.kr ID : class Pw : siesta

Upload: ozan-ari

Post on 21-Apr-2015

36 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 2011-2 Qt Siesta Tutorial-1

SIESTA Tutorial #1

Yong-Hoon Kim & Han Seul KimGraduate School of EEWS

Korea Advanced Institute of Science & Technology

[email protected]

EEW522 Quantum Transport (Fall 2011)

Y.-H. Kim@ KAIST EEWS

EEW522Fall 2011

EEW522Fall 2011 Outline & References

Plan for this tutorial• Lecture 1: SIESTA – Based on SIESTA school @ Barcelona 2007

• Lecture 2: TranSIESTA – Based on SIESTA school @ Barcelona 2009

References• SIESTA homepage (http://www.icmab.es/siesta/) “Documentation”

“Tutorials”

• TranSIESTA school 2009 (http://wiki.tstutorial.dreamhosters.com)

Exercises available at ..quest.kaist.ac.kr

ID : class

Pw : siesta

Page 2: 2011-2 Qt Siesta Tutorial-1

Y.-H. Kim@ KAIST EEWS

EEW522Fall 2011

EEW522Fall 2011 Algorithm of LCAO KS‐DFT 

Yes

No

μ

μiμi χcφ )()( rr kkk i

ki

ki

ki

k ccfD *

k

H

Itot RF,Ε

converged?

kkkkkiii cScH

kkkkkiii cScH

LCAO:

Notation:

ki

kki

ki

k cScH

rnnE

r|rr|

rnrdr xc

xcH

;

rrDkdV

rn kkk

V~

*1

Postprocessing: Bandstructure, (P)DOS, population analysis, etc.

Y.-H. Kim@ KAIST EEWS

EEW522Fall 2011

EEW522Fall 2011 Overview for SIESTA

input

*.psf*.vps

*.fdf Including structure, SCF options, etc.

Pseudopotential for each atomic species.

output

Post-processing

*.bands*.PDOS*.LDOS*.EIG

Visualization / plotting of• Band structure,• PDOS• LDOS• MD movie• Phonon vibration mode …

Page 3: 2011-2 Qt Siesta Tutorial-1

Y.-H. Kim@ KAIST EEWS

EEW522Fall 2011

EEW522Fall 2011 Exercise 1. Basic SIESTA execution

• Contents: CH3 and CH4 Basics (Basis sets, SCF, structural optimization, spin polarization, etc.)

• e.g. CH4

ch4.fdfC.psfH.psf

3Dplot/CH3/CH4/cubic/Exercise-1.pdfGGA/relax/

Y.-H. Kim@ KAIST EEWS

EEW522Fall 2011

EEW522Fall 2011 Exercise 1. Basic SIESTA execution

Basic single point energy calculation: File ch4.fdf

#General system specificationsSystemName CH4 moleculeSystemLabel ch4NumberOfAtoms 5NumberOfSpecies 2

%block ChemicalSpeciesLabel1 6 C # Species index, atomic number, label2 1 H # Species index, atomic number, label%endblock ChemicalSpeciesLabel

#Unit cell for the calculationLatticeConstant 40 Ang%block LatticeVectors1.000 0.000 0.0000.000 1.000 0.0000.000 0.000 1.000

%endblock LatticeVectors

#Atomic coordinatesAtomicCoordinatesFormat Ang

%block AtomicCoordinatesAndAtomicSpecies0.000 0.000 0.000 11.219 -0.284 -0.377 2

-0.284 1.219 -0.377 2 -0.140 -0.140 1.219 2 -0.833 -0.833 -0.503 2 %endblock AtomicCoordinatesAndAtomicSpecies

# Basis set definitionPAO.EnergyShift 250 meVPAO.SplitNorm 0.15PAO.BasisSize SZ

#Density functionalXC.functional GGAXC.authors PBE

#Real space grid MeshCutoff 125.0 Ry

# Convergence of SCF MaxSCFIterations 50DM.MixingWeight 0.9DM.NumberPulay 2

# Type of solution (diagon is the default for less than 100 atoms)SolutionMethod diagon

“Modeling” “Simulation”

Page 4: 2011-2 Qt Siesta Tutorial-1

Y.-H. Kim@ KAIST EEWS

EEW522Fall 2011

EEW522Fall 2011

Basic single point energy calculation: File ch4.fdf

#General system specificationsSystemName CH4 moleculeSystemLabel ch4NumberOfAtoms 5NumberOfSpecies 2

%block ChemicalSpeciesLabel1 6 C # Species index, atomic number, label2 1 H # Species index, atomic number, label%endblock ChemicalSpeciesLabel

#Unit cell for the calculationLatticeConstant 40 Ang%block LatticeVectors1.000 0.000 0.0000.000 1.000 0.0000.000 0.000 1.000

%endblock LatticeVectors

#Atomic coordinatesAtomicCoordinatesFormat Ang

%block AtomicCoordinatesAndAtomicSpecies0.000 0.000 0.000 11.219 -0.284 -0.377 2

-0.284 1.219 -0.377 2 -0.140 -0.140 1.219 2 -0.833 -0.833 -0.503 2 %endblock AtomicCoordinatesAndAtomicSpecies

# Basis set definitionPAO.EnergyShift 250 meVPAO.SplitNorm 0.15PAO.BasisSize SZ

#Density functionalXC.functional GGAXC.authors PBE

#Real space grid MeshCutoff 125.0 Ry

# Convergence of SCF MaxSCFIterations 50DM.MixingWeight 0.9DM.NumberPulay 2

# Type of solution (diagon is the default for less than 100 atoms)SolutionMethod diagon

Exercise 1. Basic SIESTA execution

Atomic species info.

Should match pseudopotential file name

Y.-H. Kim@ KAIST EEWS

EEW522Fall 2011

EEW522Fall 2011

Basic single point energy calculation: File ch4.fdf

#General system specificationsSystemName CH4 moleculeSystemLabel ch4NumberOfAtoms 5NumberOfSpecies 2

%block ChemicalSpeciesLabel1 6 C # Species index, atomic number, label2 1 H # Species index, atomic number, label%endblock ChemicalSpeciesLabel

#Unit cell for the calculationLatticeConstant 40 Ang%block LatticeVectors1.000 0.000 0.0000.000 1.000 0.0000.000 0.000 1.000

%endblock LatticeVectors

#Atomic coordinatesAtomicCoordinatesFormat Ang

%block AtomicCoordinatesAndAtomicSpecies0.000 0.000 0.000 11.219 -0.284 -0.377 2

-0.284 1.219 -0.377 2 -0.140 -0.140 1.219 2 -0.833 -0.833 -0.503 2 %endblock AtomicCoordinatesAndAtomicSpecies

# Basis set definitionPAO.EnergyShift 250 meVPAO.SplitNorm 0.15PAO.BasisSize SZ

#Density functionalXC.functional GGAXC.authors PBE

#Real space grid MeshCutoff 125.0 Ry

# Convergence of SCF MaxSCFIterations 50DM.MixingWeight 0.9DM.NumberPulay 2

# Type of solution (diagon is the default for less than 100 atoms)SolutionMethod diagon

Exercise 1. Basic SIESTA execution

Atomic coord. Info.

Page 5: 2011-2 Qt Siesta Tutorial-1

Y.-H. Kim@ KAIST EEWS

EEW522Fall 2011

EEW522Fall 2011

Basic single point energy calculation: File ch4.fdf

#General system specificationsSystemName CH4 moleculeSystemLabel ch4NumberOfAtoms 5NumberOfSpecies 2

%block ChemicalSpeciesLabel1 6 C # Species index, atomic number, label2 1 H # Species index, atomic number, label%endblock ChemicalSpeciesLabel

#Unit cell for the calculationLatticeConstant 40 Ang%block LatticeVectors1.000 0.000 0.0000.000 1.000 0.0000.000 0.000 1.000

%endblock LatticeVectors

#Atomic coordinatesAtomicCoordinatesFormat Ang

%block AtomicCoordinatesAndAtomicSpecies0.000 0.000 0.000 11.219 -0.284 -0.377 2

-0.284 1.219 -0.377 2 -0.140 -0.140 1.219 2 -0.833 -0.833 -0.503 2 %endblock AtomicCoordinatesAndAtomicSpecies

# Basis set definitionPAO.EnergyShift 250 meVPAO.SplitNorm 0.15PAO.BasisSize SZ

#Density functionalXC.functional GGAXC.authors PBE

#Real space grid MeshCutoff 125.0 Ry

# Convergence of SCF MaxSCFIterations 50DM.MixingWeight 0.9DM.NumberPulay 2

# Type of solution (diagon is the default for less than 100 atoms)SolutionMethod diagon

Exercise 1. Basic SIESTA execution

Basis sets (automatic)

Y.-H. Kim@ KAIST EEWS

EEW522Fall 2011

EEW522Fall 2011

Basic single point energy calculation: File ch4.fdf

#General system specificationsSystemName CH4 moleculeSystemLabel ch4NumberOfAtoms 5NumberOfSpecies 2

%block ChemicalSpeciesLabel1 6 C # Species index, atomic number, label2 1 H # Species index, atomic number, label%endblock ChemicalSpeciesLabel

#Unit cell for the calculationLatticeConstant 40 Ang%block LatticeVectors1.000 0.000 0.0000.000 1.000 0.0000.000 0.000 1.000

%endblock LatticeVectors

#Atomic coordinatesAtomicCoordinatesFormat Ang

%block AtomicCoordinatesAndAtomicSpecies0.000 0.000 0.000 11.219 -0.284 -0.377 2

-0.284 1.219 -0.377 2 -0.140 -0.140 1.219 2 -0.833 -0.833 -0.503 2 %endblock AtomicCoordinatesAndAtomicSpecies

# Basis set definitionPAO.EnergyShift 250 meVPAO.SplitNorm 0.15PAO.BasisSize SZ

#Density functionalXC.functional GGAXC.authors PBE

#Real space grid MeshCutoff 125.0 Ry

# Convergence of SCF MaxSCFIterations 50DM.MixingWeight 0.9DM.NumberPulay 2

# Type of solution (diagon is the default for less than 100 atoms)SolutionMethod diagon

Exercise 1. Basic SIESTA execution

Basis sets (automatic)

Number of orbitals per atom

SZ : cheap calculation* SIESTA default : DZP

Page 6: 2011-2 Qt Siesta Tutorial-1

Y.-H. Kim@ KAIST EEWS

EEW522Fall 2011

EEW522Fall 2011

Basic single point energy calculation: File ch4.fdf

#General system specificationsSystemName CH4 moleculeSystemLabel ch4NumberOfAtoms 5NumberOfSpecies 2

%block ChemicalSpeciesLabel1 6 C # Species index, atomic number, label2 1 H # Species index, atomic number, label%endblock ChemicalSpeciesLabel

#Unit cell for the calculationLatticeConstant 40 Ang%block LatticeVectors1.000 0.000 0.0000.000 1.000 0.0000.000 0.000 1.000

%endblock LatticeVectors

#Atomic coordinatesAtomicCoordinatesFormat Ang

%block AtomicCoordinatesAndAtomicSpecies0.000 0.000 0.000 11.219 -0.284 -0.377 2

-0.284 1.219 -0.377 2 -0.140 -0.140 1.219 2 -0.833 -0.833 -0.503 2 %endblock AtomicCoordinatesAndAtomicSpecies

# Basis set definitionPAO.EnergyShift 250 meVPAO.SplitNorm 0.15PAO.BasisSize SZ

#Density functionalXC.functional GGAXC.authors PBE

#Real space grid MeshCutoff 125.0 Ry

# Convergence of SCF MaxSCFIterations 50DM.MixingWeight 0.9DM.NumberPulay 2

# Type of solution (diagon is the default for less than 100 atoms)SolutionMethod diagon

Exercise 1. Basic SIESTA execution

DFT

If you are using GGA with a pseudopotential generated using LDA, the code will give an ERROR.

Y.-H. Kim@ KAIST EEWS

EEW522Fall 2011

EEW522Fall 2011

Basic single point energy calculation: File ch4.fdf

#General system specificationsSystemName CH4 moleculeSystemLabel ch4NumberOfAtoms 5NumberOfSpecies 2

%block ChemicalSpeciesLabel1 6 C # Species index, atomic number, label2 1 H # Species index, atomic number, label%endblock ChemicalSpeciesLabel

#Unit cell for the calculationLatticeConstant 40 Ang%block LatticeVectors1.000 0.000 0.0000.000 1.000 0.0000.000 0.000 1.000

%endblock LatticeVectors

#Atomic coordinatesAtomicCoordinatesFormat Ang

%block AtomicCoordinatesAndAtomicSpecies0.000 0.000 0.000 11.219 -0.284 -0.377 2

-0.284 1.219 -0.377 2 -0.140 -0.140 1.219 2 -0.833 -0.833 -0.503 2 %endblock AtomicCoordinatesAndAtomicSpecies

# Basis set definitionPAO.EnergyShift 250 meVPAO.SplitNorm 0.15PAO.BasisSize SZ

#Density functionalXC.functional GGAXC.authors PBE

#Real space grid MeshCutoff 125.0 Ry

# Convergence of SCF MaxSCFIterations 50DM.MixingWeight 0.9DM.NumberPulay 2

# Type of solution (diagon is the default for less than 100 atoms)SolutionMethod diagon

Exercise 1. Basic SIESTA execution

Grid optionFineness of the real-space grid for Hartree & XC potential & energy (100~200 Ry)

Page 7: 2011-2 Qt Siesta Tutorial-1

Y.-H. Kim@ KAIST EEWS

EEW522Fall 2011

EEW522Fall 2011

Basic single point energy calculation: File ch4.fdf

#General system specificationsSystemName CH4 moleculeSystemLabel ch4NumberOfAtoms 5NumberOfSpecies 2

%block ChemicalSpeciesLabel1 6 C # Species index, atomic number, label2 1 H # Species index, atomic number, label%endblock ChemicalSpeciesLabel

#Unit cell for the calculationLatticeConstant 40 Ang%block LatticeVectors1.000 0.000 0.0000.000 1.000 0.0000.000 0.000 1.000

%endblock LatticeVectors

#Atomic coordinatesAtomicCoordinatesFormat Ang

%block AtomicCoordinatesAndAtomicSpecies0.000 0.000 0.000 11.219 -0.284 -0.377 2

-0.284 1.219 -0.377 2 -0.140 -0.140 1.219 2 -0.833 -0.833 -0.503 2 %endblock AtomicCoordinatesAndAtomicSpecies

# Basis set definitionPAO.EnergyShift 250 meVPAO.SplitNorm 0.15PAO.BasisSize SZ

#Density functionalXC.functional GGAXC.authors PBE

#Real space grid MeshCutoff 125.0 Ry

# Convergence of SCF MaxSCFIterations 50DM.MixingWeight 0.9DM.NumberPulay 2

# Type of solution (diagon is the default for less than 100 atoms)SolutionMethod diagon

Exercise 1. Basic SIESTA execution

SCF

Y.-H. Kim@ KAIST EEWS

EEW522Fall 2011

EEW522Fall 2011

Basic single point energy calculation: File ch4.fdf

#General system specificationsSystemName CH4 moleculeSystemLabel ch4NumberOfAtoms 5NumberOfSpecies 2

%block ChemicalSpeciesLabel1 6 C # Species index, atomic number, label2 1 H # Species index, atomic number, label%endblock ChemicalSpeciesLabel

#Unit cell for the calculationLatticeConstant 40 Ang%block LatticeVectors1.000 0.000 0.0000.000 1.000 0.0000.000 0.000 1.000

%endblock LatticeVectors

#Atomic coordinatesAtomicCoordinatesFormat Ang

%block AtomicCoordinatesAndAtomicSpecies0.000 0.000 0.000 11.219 -0.284 -0.377 2

-0.284 1.219 -0.377 2 -0.140 -0.140 1.219 2 -0.833 -0.833 -0.503 2 %endblock AtomicCoordinatesAndAtomicSpecies

# Basis set definitionPAO.EnergyShift 250 meVPAO.SplitNorm 0.15PAO.BasisSize SZ

#Density functionalXC.functional GGAXC.authors PBE

#Real space grid MeshCutoff 125.0 Ry

# Convergence of SCF MaxSCFIterations 50DM.MixingWeight 0.9DM.NumberPulay 2

# Type of solution (diagon is the default for less than 100 atoms)SolutionMethod diagon

Exercise 1. Basic SIESTA execution

Type of solution

For now, “diagon” or “ordern”. Later, + “transiesta”

Page 8: 2011-2 Qt Siesta Tutorial-1

Y.-H. Kim@ KAIST EEWS

EEW522Fall 2011

EEW522Fall 2011 Exercise 1. Basic SIESTA execution

Run the program:

siesta < ch4.fdf > ch4.out

Y.-H. Kim@ KAIST EEWS

EEW522Fall 2011

EEW522Fall 2011

Structural optimization: File ch4_relax.fdf under /relax

Add the following:

#Geometrical optimizationMD.TypeOfRun CGMD.NumCGsteps 50MD.MaxCGDispl 0.1 BohrMD.MaxForceTol 0.04d0 eV/Ang

Exercise 1. Basic SIESTA execution

Page 9: 2011-2 Qt Siesta Tutorial-1

Y.-H. Kim@ KAIST EEWS

EEW522Fall 2011

EEW522Fall 2011

Plotting densities: File ch3_3Dplot.fdf

#General system specificationsSystemName CH3 moleculeSystemLabel ch3NumberOfAtoms 4NumberOfSpecies 2

%block ChemicalSpeciesLabel1 6 C # Species index, atomic number, label2 1 H # Species index, atomic number, label%endblock ChemicalSpeciesLabel

# Basis set definitionPAO.EnergyShift 200 meVPAO.SplitNorm 0.15PAO.BasisSize DZP

#Atomic coordinatesAtomicCoordinatesFormat Ang

%block AtomicCoordinatesAndAtomicSpecies0.02088760 0.02088714 -0.29121489 1 C1.08698535 -0.26624925 -0.24725790 2 H

-0.26624937 1.08698563 -0.24725791 2 H -0.75546282 -0.75546274 -0.40463117 2 H

%endblock AtomicCoordinatesAndAtomicSpecies

#Real space grid MeshCutoff 125.0 Ry

# Convergence of SCF MaxSCFIterations 50DM.MixingWeight 0.4DM.NumberPulay 2

# Type of solution (diagon is the default for less than 100 atoms)SolutionMethod diagon

#Spin polarizationSpinPolarized .true.

#3DPlotsSaveRho .true.%block LocalDensityOfStates-6.00 -3.00 eV%endblock LocalDensityOfStates

Exercise 1. Basic SIESTA execution

Spin polarization

Y.-H. Kim@ KAIST EEWS

EEW522Fall 2011

EEW522Fall 2011

Plotting densities: File ch3_3Dplot.fdf

#General system specificationsSystemName CH3 moleculeSystemLabel ch3NumberOfAtoms 4NumberOfSpecies 2

%block ChemicalSpeciesLabel1 6 C # Species index, atomic number, label2 1 H # Species index, atomic number, label%endblock ChemicalSpeciesLabel

# Basis set definitionPAO.EnergyShift 200 meVPAO.SplitNorm 0.15PAO.BasisSize DZP

#Atomic coordinatesAtomicCoordinatesFormat Ang

%block AtomicCoordinatesAndAtomicSpecies0.02088760 0.02088714 -0.29121489 1 C1.08698535 -0.26624925 -0.24725790 2 H

-0.26624937 1.08698563 -0.24725791 2 H -0.75546282 -0.75546274 -0.40463117 2 H

%endblock AtomicCoordinatesAndAtomicSpecies

#Real space grid MeshCutoff 125.0 Ry

# Convergence of SCF MaxSCFIterations 50DM.MixingWeight 0.4DM.NumberPulay 2

# Type of solution (diagon is the default for less than 100 atoms)SolutionMethod diagon

#Spin polarizationSpinPolarized .true.

#3DPlotsSaveRho .true.%block LocalDensityOfStates-6.00 -3.00 eV%endblock LocalDensityOfStates

Exercise 1. Basic SIESTA execution

Charge density, DOS option

Set to get HOMO here.

Post-SCF

Page 10: 2011-2 Qt Siesta Tutorial-1

Y.-H. Kim@ KAIST EEWS

EEW522Fall 2011

EEW522Fall 2011

Plotting densities: File ch3_3Dplot.fdf

Exercise 1. Basic SIESTA execution

ch3.RHOCh3.LDOS

After running siesta output:

ch3 #system labelrho #Type of file to read5.0 5.0 5.0 #Shift of the origin of coordinates (bohr)1unformatted

To visualize,

grid2cube.x < grid2cube.dat

grid2cube.dat

ch3.RHO.UP.cubech3.RHO.DN.cube

Generated:

Y.-H. Kim@ KAIST EEWS

EEW522Fall 2011

EEW522Fall 2011

Plotting densities: visualization with Molekel

Exercise 1. Basic SIESTA execution

ch3.RHO.UP.cube ch3.RHO.DN.cube

Page 11: 2011-2 Qt Siesta Tutorial-1

Y.-H. Kim@ KAIST EEWS

EEW522Fall 2011

EEW522Fall 2011

Plotting densities: visualization with Molekel

Exercise 1. Basic SIESTA execution

ch3.LDOS.UP.cube ch3.LDOS.DN.cube

Y.-H. Kim@ KAIST EEWS

EEW522Fall 2011

EEW522Fall 2011 Exercise 2. Bulk crystals: Band structures and DOS

Crystalline material, FCC Al : Al_bulk.fdf

SystemName FCC AlSystemLabel AlNumberOfAtoms 1NumberOfSpecies 1

%block ChemicalSpeciesLabel1 13 Al%endblock ChemicalSpeciesLabel

#Experimental lattice parameter 4.05 AngLatticeConstant 4.05 Ang

%block LatticeVectors0.000000 0.500000 0.50000000.500000 0.000000 0.50000000.500000 0.500000 0.0000000%endblock LatticeVectors

PAO.EnergyShift 200 meVPAO.SplitNorm 0.15PAO.BasisSize SZ

AtomicCoordinatesFormat scaledcartesian

%block AtomicCoordinatesAndAtomicSpecies0.000000 0.000000 0.000000 1

%endblock AtomicCoordinatesAndAtomicSpecies

MeshCutoff 125.0 Ry

%block kgrid_Monkhorst_Pack4 0 0 0.50 4 0 0.50 0 4 0.5

%endblock kgrid_Monkhorst_Pack

MaxSCFIterations 50DM.MixingWeight 0.5DM.NumberPulay 3ElectronicTemperature 300 KSolutionMethod diagon

BandLinesScale pi/a

%block BandLines1 1.0000 1.0000 1.0000 L # Begin L20 0.0000 0.0000 0.0000 \Gamma # 20 points L ~ gamma25 2.0000 0.0000 0.0000 X # 25 points gamma ~ X30 2.0000 2.0000 2.0000 \Gamma # 30 points X ~ gamma%endblock BandLines

%block ProjetedDensityOfStates-15.0 10.0 0.1 2501 eV

%endblock ProjetedDensityOfStates

Page 12: 2011-2 Qt Siesta Tutorial-1

Y.-H. Kim@ KAIST EEWS

EEW522Fall 2011

EEW522Fall 2011 Exercise 2. Bulk crystals: Band structures and DOS

Crystalline material, FCC Al : Al_bulk.fdf

SystemName FCC AlSystemLabel AlNumberOfAtoms 1NumberOfSpecies 1

%block ChemicalSpeciesLabel1 13 Al%endblock ChemicalSpeciesLabel

#Experimental lattice parameter 4.05 AngLatticeConstant 4.05 Ang

%block LatticeVectors0.000000 0.500000 0.50000000.500000 0.000000 0.50000000.500000 0.500000 0.0000000%endblock LatticeVectors

PAO.EnergyShift 200 meVPAO.SplitNorm 0.15PAO.BasisSize SZ

AtomicCoordinatesFormat scaledcartesian

%block AtomicCoordinatesAndAtomicSpecies0.000000 0.000000 0.000000 1

%endblock AtomicCoordinatesAndAtomicSpecies

MeshCutoff 125.0 Ry

%block kgrid_Monkhorst_Pack4 0 0 0.50 4 0 0.50 0 4 0.5

%endblock kgrid_Monkhorst_Pack

MaxSCFIterations 50DM.MixingWeight 0.5DM.NumberPulay 3ElectronicTemperature 300 KSolutionMethod diagon

BandLinesScale pi/a

%block BandLines1 1.0000 1.0000 1.0000 L # Begin L20 0.0000 0.0000 0.0000 \Gamma # 20 points L ~ gamma25 2.0000 0.0000 0.0000 X # 25 points gamma ~ X30 2.0000 2.0000 2.0000 \Gamma # 30 points X ~ gamma%endblock BandLines

%block ProjetedDensityOfStates-15.0 10.0 0.1 2501 eV

%endblock ProjetedDensityOfStates

Solid = Lattice + Basis (cf. Kittel Ch.1)

Y.-H. Kim@ KAIST EEWS

EEW522Fall 2011

EEW522Fall 2011 Exercise 2. Bulk crystals: Band structures and DOS

Crystalline material, FCC Al : Al_bulk.fdf

SystemName FCC AlSystemLabel AlNumberOfAtoms 1NumberOfSpecies 1

%block ChemicalSpeciesLabel1 13 Al%endblock ChemicalSpeciesLabel

#Experimental lattice parameter 4.05 AngLatticeConstant 4.05 Ang

%block LatticeVectors0.000000 0.500000 0.50000000.500000 0.000000 0.50000000.500000 0.500000 0.0000000%endblock LatticeVectors

PAO.EnergyShift 200 meVPAO.SplitNorm 0.15PAO.BasisSize SZ

AtomicCoordinatesFormat scaledcartesian

%block AtomicCoordinatesAndAtomicSpecies0.000000 0.000000 0.000000 1

%endblock AtomicCoordinatesAndAtomicSpecies

MeshCutoff 125.0 Ry

%block kgrid_Monkhorst_Pack4 0 0 0.50 4 0 0.50 0 4 0.5

%endblock kgrid_Monkhorst_Pack

MaxSCFIterations 50DM.MixingWeight 0.5DM.NumberPulay 3ElectronicTemperature 300 KSolutionMethod diagon

BandLinesScale pi/a

%block BandLines1 1.0000 1.0000 1.0000 L # Begin L20 0.0000 0.0000 0.0000 \Gamma # 20 points L ~ gamma25 2.0000 0.0000 0.0000 X # 25 points gamma ~ X30 2.0000 2.0000 2.0000 \Gamma # 30 points X ~ gamma%endblock BandLines

%block ProjetedDensityOfStates-15.0 10.0 0.1 2501 eV

%endblock ProjetedDensityOfStates

K-point sampling

Convergence test should be done!

Page 13: 2011-2 Qt Siesta Tutorial-1

Y.-H. Kim@ KAIST EEWS

EEW522Fall 2011

EEW522Fall 2011 Exercise 2. Bulk crystals: Band structures and DOS

Crystalline material, FCC Al : Al_bulk.fdf

SystemName FCC AlSystemLabel AlNumberOfAtoms 1NumberOfSpecies 1

%block ChemicalSpeciesLabel1 13 Al%endblock ChemicalSpeciesLabel

#Experimental lattice parameter 4.05 AngLatticeConstant 4.05 Ang

%block LatticeVectors0.000000 0.500000 0.50000000.500000 0.000000 0.50000000.500000 0.500000 0.0000000%endblock LatticeVectors

PAO.EnergyShift 200 meVPAO.SplitNorm 0.15PAO.BasisSize SZ

AtomicCoordinatesFormat scaledcartesian

%block AtomicCoordinatesAndAtomicSpecies0.000000 0.000000 0.000000 1

%endblock AtomicCoordinatesAndAtomicSpecies

MeshCutoff 125.0 Ry

%block kgrid_Monkhorst_Pack4 0 0 0.50 4 0 0.50 0 4 0.5

%endblock kgrid_Monkhorst_Pack

MaxSCFIterations 50DM.MixingWeight 0.5DM.NumberPulay 3ElectronicTemperature 300 KSolutionMethod diagon

BandLinesScale pi/a

%block BandLines1 1.0000 1.0000 1.0000 L # Begin L20 0.0000 0.0000 0.0000 \Gamma # 20 points L ~ gamma25 2.0000 0.0000 0.0000 X # 25 points gamma ~ X30 2.0000 2.0000 2.0000 \Gamma # 30 points X ~ gamma%endblock BandLines

%block ProjetedDensityOfStates-15.0 10.0 0.1 2501 eV

%endblock ProjetedDensityOfStates

Band calculation option

Y.-H. Kim@ KAIST EEWS

EEW522Fall 2011

EEW522Fall 2011 Exercise 2. Bulk crystals: Band structures and DOS

Crystalline material, FCC Al : Al_bulk.fdf

SystemName FCC AlSystemLabel AlNumberOfAtoms 1NumberOfSpecies 1

%block ChemicalSpeciesLabel1 13 Al%endblock ChemicalSpeciesLabel

#Experimental lattice parameter 4.05 AngLatticeConstant 4.05 Ang

%block LatticeVectors0.000000 0.500000 0.50000000.500000 0.000000 0.50000000.500000 0.500000 0.0000000%endblock LatticeVectors

PAO.EnergyShift 200 meVPAO.SplitNorm 0.15PAO.BasisSize SZ

AtomicCoordinatesFormat scaledcartesian

%block AtomicCoordinatesAndAtomicSpecies0.000000 0.000000 0.000000 1

%endblock AtomicCoordinatesAndAtomicSpecies

MeshCutoff 125.0 Ry

%block kgrid_Monkhorst_Pack4 0 0 0.50 4 0 0.50 0 4 0.5

%endblock kgrid_Monkhorst_Pack

MaxSCFIterations 50DM.MixingWeight 0.5DM.NumberPulay 3ElectronicTemperature 300 KSolutionMethod diagon

BandLinesScale pi/a

%block BandLines1 1.0000 1.0000 1.0000 L # Begin L20 0.0000 0.0000 0.0000 \Gamma # 20 points L ~ gamma25 2.0000 0.0000 0.0000 X # 25 points gamma ~ X30 2.0000 2.0000 2.0000 \Gamma # 30 points X ~ gamma%endblock BandLines

%block ProjetedDensityOfStates-15.0 10.0 0.1 2501 eV

%endblock ProjetedDensityOfStates

PDOS option

energy range (min / max), broadening, number of points, unit

Page 14: 2011-2 Qt Siesta Tutorial-1

Y.-H. Kim@ KAIST EEWS

EEW522Fall 2011

EEW522Fall 2011

gnubands.x < Al.bands > bands.out

Band structure:

Plotting with gnuplot

Exercise 2. Bulk crystals: Band structures and DOS

Y.-H. Kim@ KAIST EEWS

EEW522Fall 2011

EEW522Fall 2011

DOS plot:

Exercise 2. Bulk crystals: Band structures and DOS

python dos.py Al.DOS

K-point sampling 4x4x4 K-point sampling 18x18x18

Page 15: 2011-2 Qt Siesta Tutorial-1

Y.-H. Kim@ KAIST EEWS

EEW522Fall 2011

EEW522Fall 2011 Summary

• Background: DFT

• Calculation parameters

• Specific examples

1. Molecules: CH4, CH3, visualization, etc.

2. Solids: Al, band structure, etc.