2 ano quimica

40
APOSTILA 2015 QUÍMICA

Upload: fsinternet

Post on 17-Jan-2016

41 views

Category:

Documents


0 download

DESCRIPTION

QUIMICA

TRANSCRIPT

Page 1: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2013 Página 0

APOSTILA 2015

QUÍMICA

Page 2: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 1

Page 3: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 2

Soluço es

Soluções são misturas de duas ou mais substâncias que apresentam

aspecto uniforme, ou seja, são sistemas homogêneos formados por uma ou

mais substâncias dissolvidas (solutos) em outra substância presente em maior

proporção na mistura (solvente). Nesses tipos de soluções, a água é o solvente

mais utilizado, sendo conhecida por solvente universal. Essas soluções são

denominadas soluções aquosas.

Em uma mesma quantidade de solvente, se comparar dois solutos

diferentes pode se perceber que cada soluto terá um limite de solubilidade.

Portanto, diferentes solutos se dissolvem em diferentes proporções.

Existem três tipos de solução:

Solução saturada: contém a máxima quantidade de soluto numa dada quantidade de solvente, a uma determinada temperatura.

Solução não-saturada ou insaturada: Uma solução com quantidade de soluto inferior ao limite de solubilidade é denominada.

Solução supersaturada: Submetendo uma solução saturada a aquecimento, ao adicionar maior quantidade de solvente (que a solução suportaria a temperatura ambiente) aumenta-se a solubilidade do soluto, tornando a solução supersaturada. Mas ao resfria-la ela volta a ser uma solução saturada, agora com corpo de fundo.

Page 4: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 3

Exercícios 1) O gráfico representa as curvas de

solubilidade das substâncias A, B e C:

Com base no diagrama, responda:

a) Qual das substâncias tem sua solubilidade diminuída com a elevação da temperatura?

b) Qual a máxima quantidade de A que conseguimos dissolverem 100 g de H2O a 20°C?

c) Considerando apenas as substâncias B e C, qual delasé a mais solúvel em água?

d) Considerando apenas as substâncias A e B, qual delasé a mais solúvel em água?

e) Qual é a massa de C que satura 500 g de água a100°C? Indique a massa da solução obtida (massado soluto + massa do solvente).

f) Uma solução saturada de B com 100 g de água, preparadaa 60°C, é resfriada até 20°C. Determine a massade B que irá precipitar, formando o corpo de fundo a20°C.

2) O coeficiente de solubilidade de um sal éde 60 g por 100 g de água a 80°C.

Determine a massa em gramas desse sal, nessa temperatura, necessária para satura 80 g de H2O.

3) O brometo de potássio apresenta a seguinte tabela de solubilidade:

Qual a massa de brometo de potássionecessária para saturar:

a) 100 g de água a 50 ºC;

b) 200 g de água a 70 ºC.

4) Usando as informações do exercício anterior responda:

Uma solução foi preparada, a 30°C, dissolvendo-se 40 g de brometo de potássio em100 g de água. Essa solução é saturada?

5) (Unicamp-SP) "Os peixes estão morrendoporque a água do rio está sem oxigênio, masnos trechos de maior corredeira a quantidade de oxigênio aumenta”.

Ao ouvir esta informaçãode um técnico do meio ambiente, umestudante que passava pela margem do rioficou confuso e fez a seguinte reflexão:

"Estou vendo a água no rio e sei que a águacontém, em suas moléculas, oxigênio; entãocomo pode ter acabado o oxigênio do rio?".

a) Escreva a fórmula das substâncias mencionadaspelo técnico.

b) Qual a confusão cometida pelo estudanteem sua reflexão?

Page 5: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 4

Concentração das Soluções Para facilitar o trabalho, adotaremos o índice 1 para indicarmos o soluto,

o índice 2 paraindicarmos o solvente, e os dados relacionados à solução não

conterão índices.

Assim:

Concentração comum (C)

É a relação entre a massa do soluto e o volume da solução:

Densidade da solução (d)

É a relação entre a massa da solução e o seu volume:

Concentração em mol/L ou concentração molar ou

molaridade

Page 6: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 5

Observações:

Page 7: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 6

Exercícios • Concentração comum

1) Uma solução foi preparada adicionando-se40 g de NaOH em água suficiente para produzir400 mL de solução. Calcule a concentraçãoda solução em g/mL e g/L.

2) Considere o texto:

“Uma solução que apresenta concentração60 g/L apresenta .... gramas de soluto, porlitro de solução. Portanto, em 10 litros dessasolução devem existir .... gramas de soluto.”

Identifique as palavras que preenchem aslacunas corretamente.

3) Ao chorar convulsivamente, uma pessoa eliminou 5mL de lágrima. Considerando que essa solução apresenta concentração de sais iguala 6 g/L, determine a massa de sais eliminadosna crise de choro.

4) Considere o esquema a seguir, do qual foramretiradas três alíquotas A,B,C, a partir de umamesma solução aquosa.

Responda às seguintes questões:

a) Qual a massa de soluto existente no recipiente A?

b) Calcule a concentração em g/mL da solução contida no recipiente B.

c) Forneça a concentração em mg/cm3 da solução contida no recipiente C.

d) Se toda a água presente na solução original, após a retirada das três amostras, fosse evaporada, qual seria a massa de soluto obtida?

• Densidade da solução

5) Considere o texto:

“Uma solução aquosa apresenta densidadeigual a 1,2 g/mL. Logo, a massa de cada mililitrodessa solução é igual a .... . Assim, umlitro dessa solução apresenta uma massade .... .”

Identifique as palavras que preenchem corretamenteas lacunas.

6) Uma solução foi preparada misturando-se 20 gde um sal em 200 g de água. Considerando-seque o volume da solução é igual a 200 mL,determine sua densidade em g/mL e g/L.

7) Uma solução cuja densidade é 1 150 g/L foipreparada dissolvendo-se 160 g de NaOH em760 cm3 de água. Determine a massa dasolução obtida e seu volume.(Dado: densidade da água = 1,0 g/cm3)

• Concentração em mol/L

8) Considere o texto:

"Uma solução 2,0 mol/L, ou 2,0 M, de NaOHapresenta .... mol de soluto para cada litrode solução. Assim, em 10 L dessa soluçãoencontramos .... mol de soluto."

Identifique as quantidades que preenchem corretamente as lacunas.

Page 8: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 7

9) Calcule a concentração em mol/L ou molaridadede uma solução que foi preparada dissolvendo-se 18 gramasde glicose em águasuficiente para produzir 1 litro da solução.(Dado: massa molar da glicose = 180 gmol–1)

10) Observe o frasco abaixo que contém uma solução aquosa de ácido sulfúrico (H2SO4), utilizada em laboratório, e responda às questões a seguir, sabendo que o volume da solução contida no frasco é 2,0 L.

I — Qual o número de mol do soluto presente nessa solução?

II — Determine a massade soluto presentenessa solução.

III — Qual é o volumedessa solução que contém 0,01 molde H2SO4?

IV — Calcule a massa de soluto presente em500 mL dessa solução.(Dado:massa molar do H2SO4 = 98 g mol–1)

11) (Cesgranrio-RJ) O metal mercúrio (Hg) é tóxico,pode ser absorvido, via gastrintestinal,pelos animais e sua excreção é lenta. Aanálise da água de um rio contaminado revelouuma concentração molar igual a 5,0x10–5 M de mercúrio. Qual é a massaaproximada, em mg, de mercúrio ingerida porum garimpeiro, ao beber um copo contendo250 mL dessa água?

(Dado: massa molar do Hg = 200 g mol–1)

12) (UFV-MG) Em 100 mL de um soro sanguíneohumano, há 0,585 g de cloreto de sódio(NaCl). A concentração em quantidade dematéria deste sal no sangue é, em mol/L:

(Dado: NaCl = 58,5 g/mol)

a) 0,5 b) 0,4 c) 0,3

d) 0,2 e) 0,1

13) Calcule as concentrações molares dos íons presentes nas soluções 0,002 mol/L das seguintes substâncias: HClO4, Ba(OH)2, Al(NO3)3.

• Relações entre os diferentes tipos de concentração

14) (UFCE) Qual é a molaridade de uma solução aquosa de etanol (C2H6O) de concentração igual a 4,6 g/L? (massa molar do etanol = 46 g mol–1)

a) 4,6 b) 1,0 c) 0,50

d) 0,20. e) 0,10

15) (UFRS) O formol é uma solução aquosa de metanal (HCHO) a 40%, em massa, e possui densidade de 0,92 g/mL. Essa solução apresenta:

a) 920 g de metanal em 1 L de água.

b) 40 g de metanal em 100 mL de água.

c) 4 g de metanal em 920 g de solução.

d) 4 g de metanal em 10 g de solução.

e) 9,2 g de metanal em 100 mL de água.

16) (PUC-MG) Num refrigerante do tipo "cola", a análise química determinou uma concentração de ácido fosfórico igual a 0,245 g/L. A concentração de ácido fosfórico em mol/L, nesse refrigerante, é igual a:

a) 2,5x10–3 b) 5,0x10–3 c) 2,5x10–2

d) 5,0x10–2 e) 2,5x10–1

Page 9: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 8

Diluição de soluções Uma solução pode ser preparada adicionando-se solvente a uma solução

inicialmente mais concentrada. Este processo é denominado diluição. A adição

de mais solvente provoca aumento no volume da solução; a quantidade de

soluto, porém, permanece constante.

Como:

Podemos ter as seguintes relações entre a solução inicial e a final:

Quantidade inicial de soluto = Quantidade final de soluto

Page 10: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 9

Exercícios 1. (UFPI) A uma amostra de 100 mL de

NaOH de concentração 20 g/L foi adicionada água suficiente para completar 500 mL. A concentração, em g/L, dessa nova solução é igual a:

a) 2 b) 3 c) 4 d) 5 e) 8

2. (Unicamp-SP) Um dos grandes problemas das navegações do século XVI referia-se à limitação de água potável que era possível transportar numa embarcação. Imagine uma situação de emergência em que restaram apenas 300 litros (L) de água potável (considere-a completamente isenta de eletrólitos). A água do mar não é apropriada para o consumo devido à grande concentração de NaCl(25 g/L), porém o soro fisiológico (10 g NaCl/L) é. Se os navegantes tivessem conhecimento da composição do soro fisiológico, poderiam usar a água potável para diluir água do mar de modo a obter soro e assim teriam um volume maior de líquido para beber.

a) Que volume total de soro seria obtido com a diluição se todos os 300 litros de água potável fossem usados para este fim?

b) Considerando-se a presença de 50 pessoas na embarcação e admitindo-se

uma distribuição equitativa do soro, quantos gramas de NaClteriam sido ingeridos por cada pessoa?

c) Uma maneira que os navegadores usavam para obter água potável adicional era recolher água de chuva. Considerando-se que a água da chuva é originária, em grande parte, da água do mar, como se explica que ela possa ser usada como água potável?

3. (Fuvest-SP) Se adicionarmos 80 mL de água a 20 mL de uma solução 0,1 molar de hidróxido de potássio, obteremos uma solução de concentração molar igual a:

a) 0,010 b) 0,020 c) 0,025 d) 0,040 e) 0,050.

4. (UERJ) Diluição é uma operação muito empregada no nosso dia-a-dia, quando, por exemplo, preparamos um refresco a partir de um suco concentrado. Considere 100 mL de determinado suco em que a concentração do soluto seja de 0,4 mol/L. O volume de água, em mL, que deverá ser acrescentado para que a concentração do soluto caia para 0,04 mol/L, será de:

a) 1 000 b) 900 c) 500.

d) 400

Page 11: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 10

Termoquí mica

Vamos estudar as trocas de energia, na forma de calor, envolvidas nas

reações químicas e nas mudanças de estado físico das substâncias. Esse estudo

é denominado termoquímica.

São dois os processos em que há troca de energia na forma de calor: o

processo exotérmico e o endotérmico.

Não se conhece nenhuma maneira de determinar o conteúdo de energia

térmica (entalpia = H) de uma substância. Na prática, o que conseguimos medir

é a variação da entalpia (∆H) de um processo. Essa variação corresponde à

quantidade de energia liberada ou absorvida durante o processo, realizado a

pressão constante.

O cálculo da variação da entalpia é dado pela expressão genérica:

Nas reações exotérmicas, como ocorre liberação de calor, a entalpia dos

produtos (HP) é menor do que a entalpia dos reagentes (HR).

Genericamente, temos:

Processo exotérmico é aquele que ocorre com liberação de calor.

Processo endotérmico é aquele que ocorre com absorção de calor.

Page 12: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 11

Logo, a reação pode ser representada por:

Nas reações endotérmicas, como ocorre absorção de calor, a entalpia

dos produtos (HP) é maior do que a entalpia dos reagentes (HR).

Genericamente, temos:

Logo, a reação pode ser representada por:

Page 13: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 12

Entalpia Padrão A variação de entalpia de uma reação depende da temperatura, da

pressão, do estado físico, do número de mol e da variedade alotrópica das

substâncias envolvidas. Por esse motivo foi criado um referencial para fazermos

comparações: a entalpia padrão. Dessa maneira, as entalpias serão sempre

avaliadas em relação a uma mesma condição (condição padrão ou estado

padrão).

Por convenção foi estabelecido que:

As substâncias simples H2(g), O2(g), Fe(s), Hg(l), Cl2(g), no estado padrão

(25 ºC a 1atm), apresentam entalpia H° = 0.

Os gráficos a seguir nos mostram as diferenças de entalpia encontradas

em algumas variedades alotrópicas.

Equação termoquímica A entalpia de um elemento ou de uma substância varia de acordo com o

estado físico, a pressão, a temperatura e a variedade alotrópica do elemento.

Logo, numa equação termoquímica, devemos indicar:

O estado padrão de uma substância corresponde à sua forma mais estável, a 1atm, a 25°C. A entalpia padrão de uma substância é indicada por H°.

Toda substância simples, no estado padrão e na sua forma alotrópica mais estável (mais comum), tem entalpia (H) igual a zero.

Page 14: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 13

• a variação de entalpia (H);

• os estados físicos de todos os participantes e, também, as variedades

alotrópicas, caso existam;

• a temperatura e a pressão nas quais a reação ocorreu;

• o número de mol dos elementos participantes.

Veja dois exemplos e suas respectivas interpretações:

1º exemplo:

A interpretação dessa equação termoquímica é dada por: a 25 ºC e

1 atm, 1 mol de carbono grafite (Cgraf) reage com 1 mol de gás oxigênio (O2),

produzindo 1 mol de gás carbônico (CO2) e liberando 394 kJ.

Normalmente, não são indicadas a pressão e a temperatura em que a

reação se realizou, pois se admite que ela ocorreu no estado padrão, ou seja, à

pressão constante de 1 atm e a 25 ºC.

2º exemplo:

A interpretação dessa equação é: a 25 ºC e 1 atm, 1 mol de gás amônia

(NH3) se decompõe, originando 1/2 mol de gás nitrogênio (N2) e 3/2 mol de gás

hidrogênio (H2) e absorvendo 46,1 kJ.

A quantidade de energia liberada ou consumida é proporcional à quantidade das substânciasenvolvidas.

Na queima de 1 mol de C3H8, por exemplo, são liberados 2046 kJ:

Portanto, se efetuarmos a combustão de 10 mol de C3H8, ocorrerá a liberação de 20460 kJ(10 · 2046 kJ).

Page 15: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 14

Exercícios

Entalpia de formação São denominadas reações de formação aquelas em que ocorre a

formação (síntese) de 1 mol de uma substância a partir de substâncias simples,

no estado padrão.

A variação de entalpia (H) nessas reações pode receber os seguintes

nomes: entalpia de formação, calor de formação, H de formação ou

entalpia padrão de formação.

Para estudarmos a entalpia dessas reações, convém lembrar que a 25 ºC

e 1 atm:

Entalpia de formação é o calor liberado ou absorvido na formação de 1 mol de uma substância a partir de substâncias simples, no estado padrão, com H = 0.

Page 16: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 15

Agora, vamos representar as equações termoquímicas que caracterizam

a formação de algumas substâncias bastante comuns, indicando os valores dos

H determinados experimentalmente:

• Água líquida — H2O(l)

• Ácido sulfúrico líquido — H2SO4(l)

Conhecendo a equação de formação de uma substância e o valor do H

dessa reação, podemos estabelecer um novo conceito. Para isso vamos analisar

a formação do gás carbônico [CO2(g)]:

Como já sabemos que tanto o Cgraf como o O2(g) apresentam no estado

padrão H0 = 0, podemos representar a reação de acordo com o gráfico abaixo.

Como a entalpia de formação do CO2(g) é –394 kJ/mol, a análise do gráfico

permite concluir que esse valor corresponde à entalpia do CO2:

Generalizando, temos:

Page 17: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 16

1. O resultado negativo não significa que o CO2(g) tem “energia negativa”, mas sim que seu conteúdoenergético (entalpia) é menor do que as entalpias do Cgraf e do O2(g), as quais, por convenção,são iguais a zero.

2. Qualquer outra reação em que ocorra a formação de CO2(g), de modo diferente do que foi apresentado,não indica a entalpia de formação do CO2(g). Veja, por exemplo:

Note que o ΔH (395,9 kJ/mol) desta reação é diferente do ΔH de formação (394 kJ/mol).

Os valores das entalpias de formação normalmente são apresentados em

tabelas:

Esse tipo de tabela é muito útil, pois permite calcular a entalpia de muitas

outras substâncias, assim como o ΔH de um grande número de reações. Para

efetuarmos corretamente esses cálculos, devemos lembrar que:

a) ΔH de formação = H da substância

b) ΔH = HP – HR

Vamos ver um exemplo de cálculo da entalpia de uma substância, ou

seja, da sua entalpia de formação, a partir de uma equação termoquímica.

A equação de decomposição do mármore pode ser representada por:

Page 18: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 17

Na tabela, encontramos as entalpias:

HCaO(s) = –635,5 kJ/mol

HCO2(g) = –394 kJ/mol

No entanto, não encontramos a entalpia de HCaCO3(s), que pode ser

determinadada seguinte maneira:

Entalpia de combustão São classificadas como reações de combustão aquelas em que uma

substância, denominada combustível, reage com o gás oxigênio (O2),

denominado comburente. Por serem sempre exotérmicas, as reações de

combustão apresentam ΔH < 0. Veja alguns exemplos:

• Combustão completa do gás hidrogênio (H2)

• Combustão completa do gás butano (C4H10)

Page 19: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 18

Quando os combustíveis são formados por carbono, hidrogênio e

oxigênio, os produtos das reações (combustões completas) serão sempre CO2(g)

e H2O(l).

A variação de entalpia na combustão completa pode ser denominada

entalpia de combustão, H de combustão, calor de combustão ou entalpia

padrão de combustão.

Vejamos um exemplo:

Combustão completa do álcool etílico (C2H6O):

Pela equação, podemos concluir que na combustão completa de 1 mol de

C2H6O(l) ocorre a liberação de 1368 kJ:

Exercício Resolvido (Fuvest-SP) Considere a reação de fotossíntese e a reação de combustão da glicose

representadas a seguir:

Sabendo que a energia envolvida na combustão de um mol de glicose é 2,8 · 106

J,

ao sintetizar meio mol de glicose, a planta irá liberar ou absorver energia? Determine o

calor envolvido nessa reação.

Solução:

A reação de combustão de um mol de glicose pode ser representada por:

Já a sua síntese (reação inversa) pode ser representada por:

Entalpia de combustão é a energia liberada na combustão completa de 1 mol de uma substância no estado padrão.

entalpia de combustão do C2H6O(l) = –1 368 kJ/mol

Page 20: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 19

Podemos perceber que, para sintetizar 1 mol de C6H12O6, a planta absorve

2,8 · 106

J. Assim, temos:

Exercícios

Page 21: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 20

LEI DE HESS Para irmos do acampamento A ao

acampamento B, a distância a ser percorrida

depende do caminho escolhido, mas a

diferença de altitude depende, exclusivamente,

das altitudes dos dois acampamentos, ou seja,

dos estados inicial e final. Da mesma maneira, a

variação de entalpia (H) numa dada reação só

depende dos estados inicial e final e independe

dos estados intermediários.

A entalpia de muitas reações químicas não pode ser determinada

experimentalmente em laboratórios. Não é possível, por exemplo, determinar a

entalpia de formação do álcool comum (etanol ou álcool etílico — C2H6O), pois

não conseguimos sintetizá-lo a partir da combinação entre carbono, hidrogênio

e oxigênio. Assim, a entalpia desse tipo de reação pode ser calculada a partir da

entalpia de outras reações, utilizando-se uma lei estabelecida pelo químico

suíço G. H. Hess, em 1840:

Um exemplo simples da aplicação da lei de Hess consiste na passagem de

1 mol de H2O(l) para o estado gasoso nas condições do estado padrão. Isso pode

ser feito em uma única etapa:

Poderíamos também obter H2O(g) em duas etapas:

a) decomposição de 1 mol de H2O(l):

b) formação de 1 mol de H2O(g):

Como a reação global corresponde à soma dessas duas reações, o H da

reação globaltambém corresponde à soma dos H das reações envolvidas:

Lei de Hess: para uma dada reação, a variação de entalpia é sempre a mesma, esteja essa reação ocorrendo em uma ou em várias etapas.

Page 22: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 21

A lei de Hess permite concluir que o valor do H do processo direto é a

soma de todos os H intermediários.

Esse mesmo processo pode ser

representado das seguintes maneiras:

1. Quando uma equação termoquímica é multiplicada por um determinado valor, seu ΔH tambémserá multiplicado pelo mesmo valor.

2. Quando uma equação termoquímica for invertida, o sinal de seu ΔH também será invertido.

Exercício Resolvido (Fuvest-SP) De acordo com os dados:

Qual é o calor em kcal envolvido na vaporização de 120 g de Cgraf?(massa molar

do C = 12 g mol–1)

Solução:

A equação que representa a entalpia de vaporização do Cgraf é:

Para determinarmos o ΔH da reação devemos:

a) manter a equação I; b) inverter a equação II.

H = H1 + H2 + .....................

Page 23: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 22

Exercícios

Page 24: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 23

Eletroquí mica

Eletroquímica é o estudo das reações químicas que produzem corrente

elétrica ou sãoproduzidas pela corrente elétrica.

Na formação de uma ligação iônica, um dos átomos cede

definitivamenteelétrons para o outro.

Por exemplo:

Dizemos, então, que o sódio sofreu oxidação(perda de elétrons) e o cloro

sofreu redução(ganhode elétrons). Evidentemente, os fenômenos de oxidação e

redução são sempre simultâneose constituema chamada reação de oxi-redução

ou redox. São exatamente essas trocas de elétrons que explicamos fenômenos

da Eletroquímica.

Assim, dizemos, resumidamente, que:

No exemplo dado (Na+ +Cl- → NaCl), a oxidação do sódio foi provocada

pelo cloro, por isso chamamos o cloro de agente oxidante ou simplesmente

oxidante. A redução do cloro foicausada pelo sódio, que é denominado agente

redutor ou simplesmente redutor.

Oxidação é a perda de elétrons.

Redução é o ganho de elétrons.

Reação de oxi-redução é quando há transferência de elétrons.

Oxidante é o elemento ou substância que provoca oxidações (ele próprio irá reduzir-se).

Page 25: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 24

Número de oxidação (Nox) O número de oxidação nos ajuda a entender como os elétrons estão

distribuídos entre os átomos que participam de um composto iônico ou de uma

molécula.

Nos compostos iônicos, o Nox corresponde à própria carga do íon. Essa

carga equivale ao número de elétrons perdidos ou recebidos na formação do

composto.

Nos compostos moleculares, não existe transferência definitiva de

elétrons. Assim,o Nox corresponde à carga elétrica que o átomo iria adquirir se

a ligação fosse rompida.

Números de oxidação usuais

a. o número de oxidação de um elemento ou substância simples é zero;

b. nos compostos, temos os seguintes valores usuais:

• o número de oxidação do hidrogênio é sempre +1 (exceto nos hidretos

metálicos, como NaH,CaH2, etc., nos quais é -1);

• o número de oxidação do oxigênio é sempre -2 (exceto nos peróxidos,

como H2O2, Na2O2,etc., nos quais é -1);

• o número de oxidação dos elementos das colunas A da classificação

periódica dos elementos pode ser deduzido do próprio número da

coluna, de acordo com o esquema a seguir:

Redutor é o elemento ou substância que provoca reduções (ele próprio irá oxidar-se).

Page 26: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 25

É fácil calcular o número de oxidação de um elemento que aparece numa

substância, lembrando que a soma dos números de oxidação de todos os

átomos, numa molécula, é zero.

Vamos, por exemplo, calcular o número de oxidação do fósforo, na

substância H3PO4. Lembre-se de que o Nox do hidrogênio é +1 e o Nox do

oxigênio é-2. Chamando de x o Nox do fósforo e considerando o número de

átomos de cada elemento, teremos a seguinte equação algébrica:

Para calcular o número de oxidação de um elemento formador de um íon

composto, devemos lembrar que a soma dos números de oxidação de todos os

átomos, num íon composto, é igual à própria carga elétrica do íon. Por exemplo:

Page 27: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 26

Exercícios 1. O que é oxidação?

2. O que é redução?

3. O que é agente oxidante?

4. O que é agente redutor?

5. Quais são os números de oxidação do cloro nas substâncias Cl2, NaCl, KClO e HClO4?

6. (Ufac) O número de oxidação do átomo de nitrogênionos compostos: N2O5; NO; HNO3 e NaNO2 é, respectivamente:

7. (Cesgranrio-RJ) Identifique, entre as opções abaixo, a fórmulado composto no qual o fósforo está no maior estadovde oxidação.

a) H3PO3 b) H2PO3 c) H3PO2 d) H4P2O5 e) HPO3

8. (Unifor-CE) O átomo de cromo apresenta número deoxidação +3 em qual espécie?

a) Cr2O3 b) CrO c) Cr

d) CrO42-

e) Cr2O72-

9. O enxofre participa da constituição de váriassubstâncias e íons, tais como: S8, H2S, SO2,H2SO3, SO3, H2SO4, SO4

2–, Na2S2O3 eAl2(SO4)3. Determine o Nox do enxofre em cadauma dessas espécies químicas.

Variação do nox nas reações de óxi-redução Tomando como exemplo a reação entre o cobre e a solução aquosa de

nitrato de prata e associando-o ao conceito de Nox, temos:

A semi-reação em que ocorre perda de elétrons é denominada reação de

oxidação. A semi-reação em que ocorre ganho de elétrons é denominada reação

de redução.

Neste exemplo, o cobre (Cu) sofre oxidação e é denominado agente

redutor, pois, ao ceder elétrons aos íons prata (Ag+), provoca sua redução. Os

íons prata (Ag+) sofrem redução e agem como agente oxidante, pois, ao

receberemelétrons do cobre (Cu), provocam sua oxidação.

Page 28: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 27

Para esta reação, temos:

Exercícios 1. (Fuvest-SP) Na reação: H2S + I2 →S + 2

HI as variações dos números de oxidação do enxofre e do iodo são, respectivamente:

a) +2 para zero e zero para +1.

b) zero para +2 e +1 para zero.

c) zero para –2 e –1 para zero.

d) zero para –1 e –1 para zero.

e) –2 para zero e zero para –1.

2. (UFRS) Por efeito de descargas elétricas, o ozônio pode ser formado, na atmosfera, a partir da sequência de

reações representadas a seguir:

Considerando as reações no sentido direto, pode-seafirmar que ocorre oxidação do nitrogênio:

a) apenas em I.

b) apenas em II.

c) apenas em I e II.

d) apenas em I e III.

e) em I, II e III.

Balanceamento de reações redox Como nas reações de óxido-redução ocorre transferência de elétrons,

para balanceá-las devemos igualar o número de elétrons perdidos e recebidos.

Para isso, devemos inicialmente determinar o número de elétrons perdidos ou

recebidos para cada espécie química, que corresponde à variação do Nox

(∆Nox).

A seguir devemos igualar o número de elétrons:

Page 29: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 28

Esses números de átomos correspondem aos coeficientes dessas

espécies; a partir deles determinamos os coeficientes das outras espécies,

obtendo a equação balanceada:

Exercícios 1. (UFV-MG) No processo de obtenção do

aço, ocorre a reação representada por:

Fe2O3 + CO → CO2 + Fe

I - Qual elemento sofre redução?

II - Qual elemento sofre oxidação?

III - Qual substância é o agente redutor?

IV - Qual substância é o agente oxidante?

V - Acerte os coeficientes da equação.

2. (UC-GO) Dada a reação:

MnO2+ HCl→MnCl2 + H2O + Cl2

Após o balanceamento, qual será o coeficiente do agente oxidante?

3. Dada a equaçãoresponda:

MnO–4 + H+ + C2O42→ Mn2+ + CO2 + H2O

I — Qual elemento se oxida?

II — Qual elemento se reduz?

III — Qual o agente oxidante?

IV — Qual o agente redutor?

V — Determine os menores coeficientesinteiros para a reação devidamentebalanceada.

Células eletroquímicas Existem dois tipos de células eletroquímicas, as pilhas (ou células

galvânicas) e a eletrólise (ou células eletrolíticas). Ambas envolvem reações de

oxirredução, onde há produção ou consumo de energia elétrica.

Nestas células ocorrem diferentes transformações de energia:

As pilhas são dispositivos que produzem energia elétrica a partir de

reações químicas que liberam energia, também são chamadas de células

galvânicas. A pilha mais conhecida no meio da química é a pilha de Daniell que

está ilustrada abaixo.

Na pilha há transformação de energia química em energia elétrica.

Page 30: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 29

Na pilha de Daniell os dois eletrodos metálicos são unidos externamente

por um fio condutor, e as duas semicelas unidas por uma ponte salina, contendo

uma solução saturada de K2SO4(aq). Os elétrons fluem, no circuito externo, do

eletrodo de zinco para o eletrodo de cobre, ou seja, os elétrons, por

apresentarem carga negativa, migram para o eletrodo positivo (pólo positivo), que,

nesse caso, é a lâmina de cobre.

A equação global dos processos ocorridos nessa pilha pode ser obtida

pela soma das duas semi-reações:

Page 31: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 30

Exercícios Questões de 1 a 15: Considere o esquema referente à pilha a seguir:

1. O eletrodo B está sofrendo uma oxidação ouuma redução?

2. O eletrodo B é denominado cátodo ou ânodo?

3. O eletrodo B é o pólo positivo ou o negativo?

4. Escreva a semi-reação que ocorre no eletrodo B.

5. A concentração (quantidade) de íons B3+ aumentaou diminui?

6. Ocorre deposição sobre o eletrodo B ou suacorrosão?

7. O eletrodo A está sofrendo uma oxidação ouuma redução?

8. O eletrodo A é denominado cátodo ou ânodo?

9. O eletrodo A é o pólo positivo ou o negativo?

10. Escreva a semi-reação que ocorre no eletrodoA.

11. A concentração (quantidade) de íons A2+aumenta ou diminui?

12. Ocorre deposição sobre o eletrodo A ou suacorrosão?

13. Escreva a equação que representa a reaçãoglobal da pilha.

14. Escreva a notação oficial que representa apilha.

15. A pilha é um processo espontâneo ou nãoespontâneo?

16. (EFOA-MG) Considere a pilha esquematizadana figura a seguir, montada com barrasmetálicas de mesmas dimensões.

O interruptor I foi fechado e, após algum tempo de funcionamento do circuito, observou-se a diminuição da massa da lâmina de zinco e o aumento da massa da lâmina de cobre. a) Explique, através de reações químicas, por que ocorrem variações das massas das duas lâminas. b) Qual é o sentido do fluxo de elétrons pelo circuito externo que liga as lâminas de zinco e cobre? Justifique. 17. (Fuvest-SP) Deixando funcionar a pilha esquematizadana figura a seguir, a barra de zinco vaise desgastando e a de chumbo fica maisespessa, em conseqüência da deposição deátomos neutros de Pb.No início do experimento, as duas barras apresentavamas mesmas dimensões. Represente,através de equações, o desgaste da barra dezinco e o espessamento da barra de chumbo.Indique o sentido do fluxo de elétrons no fiometálico.

Page 32: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 31

Na eletrolise, uma reação química não espontânea é forçada a ocorrer

com introdução de energia elétrica. Uma fonte “arranca” elétrons do ânodo que

agora é o pólo positivo, e “introduz” no cátodo que agora é o pólo negativo.

Existem dois tipos de eletrólise, a primeira é a eletrólise ígnea, que

ocorre geralmente com sais fundidos como eletrólitos. A segunda é a eletrólise

aquosa, onde o eletrólito é uma solução aquosa de um sal.

Espontaneidade de uma reação Nas pilhas, os elétrons fluem do eletrodo emque ocorre oxidação (ânodo)

para o eletrodo emque ocorre redução (cátodo), através do fioexterno. Se

colocarmos, nesse fio, um aparelhodenominado voltímetro, conseguiremos

medir aforça eletromotriz (femou E) da pilha.

O valor indicado pelo voltímetro, em volts(V), corresponde à força

eletromotriz da pilha.Nas pilhas comuns, este valor aparece indicadona

embalagem externa da pilha.

O ∆Ede uma pilha corresponde à diferença entre os potenciais de

redução ou de oxidação das espécies envolvidas, e seu cálculo pode ser feito

pelas equações a seguir:

Todas as pilhas são reações espontâneas, e seu ∆Esempre apresenta

valor positivo. No caso das reações com ∆E negativo as reações não são

espontâneas, e para que ocorram é necessário o uso de uma célula eletrolítica,

ou seja, o uso de uma eletrólise, que forneça uma energia superior ao potencial

negativo da reação, por exemplo uma reação que tem ∆E= -1,0V, para que ela

Na eletrólise ocorre transformação de energia elétrica em energia química.

∆E = Ecátodo – Eânodo

Page 33: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 32

ocorra é necessário fornecer um potencial superior a 1,0V, ou seja, 1,1V seria

suficiente.

Para calcular o ∆E de uma reação, é necessário conhecer o E das semi-

reações, para isso pode-se consultar a tabela de potenciais que está

apresentada a seguir.

Page 34: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 33

Exercícios 1. (PUC-MG) Calcule o valor do ∆E para a

célula representada pela equação:

2 Ag+(aq) + Mg(s)→2 Ag(s) + Mg2+

(aq)

conhecendo-se os potenciais-padrão de redução:

Ag+ + e–→Ag(s)E = +0,80V

Mg+2 + 2 e–→Mg(s)E = –2,37V

2. (IME-RJ) Dadas as reações de meia célula:

Cu2+ + e–→Cu+E = + 0,153 V

I2 + 2 e–→2 I–E = + 0,536 V

pede-se:

a) escrever a equação que representa a reação global da célula;

b) calcular o potencial de eletrodo global (E).

3. Conhecidos os potenciais de redução:

Mn2+ + 2 e–→Mn°E = –1,18 V

Zn2+ + 2 e– →Zn° E = –0,76 V

Qual a reação global e a ddp da pilha?

Equilí brio Quí mico

Muitas reações ocorrem completamente, ou seja, até que pelo menos

um dosreagentes seja totalmente consumido. Um exemplo desse tipo de reação

é a que acontecequando queimamos um palito de fósforo.

Existem sistemas, no entanto, em que as reações direta e inversa

ocorrem simultaneamente.Esses sistemas são denominados reversíveis e

representados por .

Essa situação acontece tanto em processos químicos como em processos

físicos.Um exemplo de processo reversível é o que ocorre com a água líquida

contida numfrasco fechado. Nesse sistema, temos moléculas de água passando

continuamente doestado líquido para o de vapor e do de vapor para o líquido.

Page 35: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 34

Quando a velocidade de vaporização (vd) se iguala à de condensação (vi),

dizemos que o sistema atingiu o equilíbrio. Graficamente, podemos representar

esse e outros equilíbrios por:

Uma conseqüência importante do fato de as duas velocidades serem

iguais na situação de equilíbrio é que as quantidades dos participantes são

constantes, porém não obrigatoriamente iguais.

Nas reações químicas reversíveis, a velocidade inicial (t = 0) da reação

direta é máxima, pois a concentração em mol/L do reagente também é máxima.

Com o decorrer do tempo, a velocidade da reação direta diminui ao passo que a

velocidade da inversa aumenta.Ao atingir o equilíbrio, essas velocidades se

igualam.

Para um equilíbrio homogêneo genérico representado por:

a expressão da constante de equilíbrio (Kc) é dada por:

Em equilíbrios heterogêneos em que existam participantes sólidos, eles

não devem ser representados na expressão da constante de equilíbrio (Kc),

pois suas concentrações são sempre constantes. Logo, nos equilíbrios a seguir,

temos:

Page 36: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 35

Kc> 1 a concentração dos “produtos” (indicados no numerador) é maior

que a dos “reagentes” (indicados no denominador), informação que nos

permite observar que a reação direta prevalece sobre a inversa.

Kc< 1 a concentração dos “reagentes”(denominador) é maior que a dos

“produtos”(numerador), o que nos indica que a reação inversa prevalece

sobre a direta.

O quociente de equilíbrio (Qc) é a relação entre as concentrações em mol/L

dos participantesem qualquer situação, mesmo que o equilíbrio ainda não

esteja estabelecido.É expresso da mesma maneira que a constante de equilíbrio

(Kc).

Se estabelecermos uma relação entre Qce Kc, podemos

ter:

Vamos considerar o equilíbrio a seguir, a 100 ºC e o valor da sua constante

igual a 0,2:

Considerando três experimentos realizados à temperatura de 100 ºC, temos:

Analisando os experimentos, vamos calcular o quociente de equilíbrioe

relacionar seus valores com Kc.

Page 37: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 36

Podemos então concluir que:

• no experimento II, o sistemaestá em equilíbrio (Kc= Qc);

• no experimento I, o sistemanão está em equilíbrio; paraatingi-lo, o valor de

Qc= 2deve igualar-se ao do Kc; isso ocorrerá com a diminuição da [NO2] e o

aumento da [N2O4];

• no experimento III, o sistema também não está em equilíbrio; para este ser

atingido,o valor de Qc= 0,1 deve igualar-se ao do Kc= 0,2; isso ocorrerá com o

aumento da[NO2] e a diminuição da [N2O4].

Até agora, a expressão do equilíbrio foi dada em termos de concentração

em mol/L(Kc). No entanto, em equilíbrios nos quais pelo menos um dos

participantes é um gás,a constante de equilíbrio pode ser expressa em termos

de pressões parciais dos gasesenvolvidos e, nesse caso, será representada por

Kp.

Assim, as expressões de Kce Kppara os equilíbrios a seguir são dadas por:

Page 38: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 37

Exercício Resolvido

Page 39: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 38

Exercícios

Page 40: 2 Ano Quimica

QUÍMICA – 2º ANO DO ENSINO MÉDIO TÉCNICO - 2015 Página 39