15.30 o11 m reid

35
Excitons and traps in rare-earth materials probed by a free-electron laser Michael F Reid Michael F Reid Jon Wells, Pubudu Senanayake Jon Wells, Pubudu Senanayake Alex Salkeld, Roger Reeves Alex Salkeld, Roger Reeves Giel Berden, FELIX Giel Berden, FELIX Andries Meijerink, Utrecht Andries Meijerink, Utrecht Chang-Kui Duan, USTC, China Chang-Kui Duan, USTC, China NZIP, Wellington, October 18, 2011

Upload: nzip

Post on 11-May-2015

230 views

Category:

Business


0 download

DESCRIPTION

Research 8: M Reid

TRANSCRIPT

Page 1: 15.30 o11 m reid

Excitons and traps in rare-earth materials probed by a free-electron laser

Michael F ReidMichael F Reid

Jon Wells, Pubudu Senanayake Jon Wells, Pubudu Senanayake

Alex Salkeld, Roger ReevesAlex Salkeld, Roger Reeves

Giel Berden, FELIXGiel Berden, FELIX

Andries Meijerink, UtrechtAndries Meijerink, Utrecht

Chang-Kui Duan, USTC, ChinaChang-Kui Duan, USTC, China

NZIP, Wellington, October 18, 2011

Page 2: 15.30 o11 m reid

2

Outline

4fN, 4fN-15d, and exciton states FELIX FEL Excited state absorption with UV + IR Yb2+ in CaF2, SrF2

Marsden Fund

Page 3: 15.30 o11 m reid

3

Lanthanides (rare earth) materials

Generally form 3+ or 2+ ions

• Valence electrons are 4f.

• Chemically very similar since 4f electrons are close to nucleus and shielded by 5s and 5p electrons.

• N = 1..14 means optical and magnetic properties can be tuned.

• Widely used in phosphors, amplifiers, lasers, etc...

Page 4: 15.30 o11 m reid

4

Page 5: 15.30 o11 m reid

5

s

sp

df

Filling of orbitals

Page 6: 15.30 o11 m reid

6

Lanthanides: 4fN, 4fN-15d, Excitons

4fN

No configuration shift Sharp lines Long lifetimes

4fN-15d Different bond length Broad absorption bands from 4fN

Broad emission bands Short lifetimes

Excitons

Excited electron can become delocalized, giving an excitonic state

Large bond-length change

Very broad, red-shifted, emission bands

Long lifetimes

e-

Page 7: 15.30 o11 m reid

7

4fN: Sharp-line spectra

Page 8: 15.30 o11 m reid

8

Vibrations

Page 9: 15.30 o11 m reid

9

Bonds are like springs

Equilibrium

Change in electronic state can change spring constant

New equilibrium

Page 10: 15.30 o11 m reid

10

Quantized Vibration Version

Page 11: 15.30 o11 m reid

11

Conduction Band, Free Electrons, Excitons

Conduction Band

Valence Band

4f

5d

Page 12: 15.30 o11 m reid

12

Excitons: Can be “free”… Ours are “bound”

Page 13: 15.30 o11 m reid

Excited-state geometry: BaF2:Ce3+

Pascual, Schamps, Barandiaran, Seijo, PRB 74, 104105 (2006)BaF2:Ce3+ cubic sites.

Potential surfaces:

5d E is contracted

5d T2 is expanded

As bond length contracts 6s orbital becomes delocalized.

13

E

T2

EnergyCe3+:CaF

2 4f1 5d1

Ce3+ : 4f1 5d1

Page 14: 15.30 o11 m reid

SrCl2:Yb2+: Sánchez-Sanz et al. J. Chem. Phys. 133, 114509 (2010)

Yb2+

Cl-/F-

Sr2+/Ca2+

SrCl2:Yb2+ / CaF

2:Yb2+

Page 15: 15.30 o11 m reid

SrCl2:Yb2+

4f14

4f135d (mixed)

4f136s

Sánchez-Sanz et al. J. Chem. Phys. 133, 114509 2010

bond length

4f135d (E)

30000 cm-1

Exciton state forms as excited electron

becomes delocalized and bonds shorten

Page 16: 15.30 o11 m reid

SrCl2:Yb2+

Absorption“Normal”Emission

Page 17: 15.30 o11 m reid

CaF2:Yb2+Absorption

“anomalous”Emission

4f14

4f135d

4f13+e

??

τrad

=15ms

τrad

=260μs

Page 18: 15.30 o11 m reid

18

FEL Excited State Absorption

UV Laser

Exciton emission

IR FEL

4f135d

4f14

4f13+e

40cm-1

τrad

=15ms

τrad

=260μs

Page 19: 15.30 o11 m reid

FELIX Nieuwegein, Netherlands

Page 20: 15.30 o11 m reid

20

FELIXSynchonized UV laser + FEL

UV IR

Page 21: 15.30 o11 m reid
Page 22: 15.30 o11 m reid

UV + FEL + Emission Spectrometer

UVIR

Emission

Page 23: 15.30 o11 m reid

1kHz ps UV 10 Hz 6μs IRmacropulse

UV

IR

Emission

365 nm

12.1 µm825 cm-1

Lowest state τ

rad=15ms !

Page 24: 15.30 o11 m reid

10K

Time-resolved spectrum

Shift similar to temperatureProbably same emission

Page 25: 15.30 o11 m reid

12.1 µm825 cm-1

16 µm625 cm-1

Faster emission from higher exciton state

More sites radiating

Page 26: 15.30 o11 m reid

Scan IR 12.1 µm825 cm-1

16 µm625 cm-1

Page 27: 15.30 o11 m reid

27

Integrate over time to obtain spectrum

Page 28: 15.30 o11 m reid

Sharp lines

The sharp lines can be explained by transitions within the 4f13 hole.

Not all transitions are allowed.

28

Yb3+ crystal field

Exchange Splitting

Page 29: 15.30 o11 m reid

Electron Trap Liberation?

Long-time enhancement must be trap liberation

Coulomb trap model

Page 30: 15.30 o11 m reid

Localized

Mobile

Page 31: 15.30 o11 m reid

Applications of TrapsX-ray storage phosphors Persistent Luminescence

Page 32: 15.30 o11 m reid

SrF2:Yb2+ Larger lattice, lower energy.

SrF2:Yb2+

CaF2:Yb2+

Page 33: 15.30 o11 m reid

CaF2:Yb2+ SrF

2:Yb2+

Page 34: 15.30 o11 m reid

Trap Liberation in SrF2:Yb2+

Effective even after exciton decay

UV IR

Exciton ESA+ Trap Liberation

Only Trap Liberation

200μs

400μs

600μs

800μs

Page 35: 15.30 o11 m reid

35

Conclusion

• FEL experiments give us a unique tool to investigate:• Excitonic states• Trap states

• More experiments and analysis• FEL• Synchrotron• Local laser experiments• Detailed modeling