1526 exploiting symmetries

66
David M. Bressoud Macalester College, St. Paul, MN Talk given at University of Florida October 29, 2004

Upload: dr-fereidoun-dejahang

Post on 14-Feb-2017

35 views

Category:

Education


0 download

TRANSCRIPT

Page 1: 1526 exploiting symmetries

David M. BressoudMacalester College, St. Paul, MNTalk given at University of FloridaOctober 29, 2004

Page 2: 1526 exploiting symmetries

1. The Vandermonde determinant

2. Weyl’s character formulae

3. Alternating sign matrices

4. The six-vertex model of statistical mechanics

5. Okada’s work connecting ASM’s and character formulae

Page 3: 1526 exploiting symmetries

x1n 1 x2

n 1 L xnn 1

M M O Mx1 x2 L xn1 1 L 1

1 I xin i

i1

n

Sn

Cauchy 1815

“Memoir on functions whose values are equal but of opposite sign when two of their variables are interchanged”

(alternating functions) Augustin-Louis

Cauchy (1789–1857)

Page 4: 1526 exploiting symmetries

Cauchy 1815

“Memoir on functions whose values are equal but of opposite sign when two of their variables are interchanged”

(alternating functions)

This function is 0 when so it is divisible by

xi x j xi x j i j

x1n 1 x2

n 1 L xnn 1

M M O Mx1 x2 L xn1 1 L 1

1 I xin i

i1

n

Sn

Page 5: 1526 exploiting symmetries

Cauchy 1815

“Memoir on functions whose values are equal but of opposite sign when two of their variables are interchanged”

(alternating functions)

This function is 0 when so it is divisible by

xi x j xi x j i j

But both polynomials have same degree, so ratio is constant, = 1.

xi x j i j

x1n 1 x2

n 1 L xnn 1

M M O Mx1 x2 L xn1 1 L 1

1 I xin i

i1

n

Sn

Page 6: 1526 exploiting symmetries

Cauchy 1815

Any alternating function in divided by the Vandermonde determinant yields a symmetric function:

x1, x2 ,K , xn

x11 n 1 x2

1 n 1 L xn1 n 1

M M O Mx1

n 1 1 x2n 1 1 L xn

n 1 1

x1n x2

n L xnn

x1n 1 x2

n 1 L xnn 1

M M O Mx1

1 x21 L xn

1

x10 x2

0 L xn0

s x1, x2 ,K , xn

Page 7: 1526 exploiting symmetries

Cauchy 1815

Any alternating function in divided by the Vandermonde determinant yields a symmetric function:

x1, x2 ,K , xn

Called the Schur function. I.J. Schur (1917) recognized it as the character of the irreducible representation of GLn indexed by .

x11 n 1 x2

1 n 1 L xn1 n 1

M M O Mx1

n 1 1 x2n 1 1 L xn

n 1 1

x1n x2

n L xnn

x1n 1 x2

n 1 L xnn 1

M M O Mx1

1 x21 L xn

1

x10 x2

0 L xn0

s x1, x2 ,K , xn

Issai Schur (1875–1941)

Page 8: 1526 exploiting symmetries

s 1,1,K ,1 is the dimension of the representation

s 1,1,K ,1 r

rrAn 1

where n 1

2,n 3

2,K ,

1 n2

12

rrAn 1

,

1,2 ,K ,n ,An 1

ei e j 1 i j n ,

ei is the unit vector with 1 in the ith coordinate

Note that the symmetric group on n letters is the group of transformations of

An 1 ei e j 1 i j n

Page 9: 1526 exploiting symmetries

Weyl 1939 The Classical Groups: their invariants and representations

Sp2n ; rx

x11 n x1

1 n L xn1 n xn

1 n

M O Mx1

n 1 x1 n 1 L xn

n 1 xn n 1

x1n x1

n L xnn xn

n

M O Mx1

1 x1 1 L xn

1 xn 1

Sp2n ; rx is the character of the irreducible representation, indexed by the partition , of the symplectic group (the subgoup of GL2n of isometries).

Hermann Weyl (1885–1955)

Page 10: 1526 exploiting symmetries

Sp2n ;1r

r rrCn

where n,n 1,K ,1 12

rrCn

,

1,2 ,K ,n ,Cn

ei e j 1 i j n U 2ei 1 i n ,

ei is the unit vector with 1 in the ith coordinate

The dimension of the representation is

Page 11: 1526 exploiting symmetries

Weyl 1939 The Classical Groups: their invariants and representations

x1n x1

n L xnn xn

n

M O Mx1

1 x1 1 L xn

1 xn 1

x1x2L xn n

xi x j i j

is a symmetric polynomial. As a polynomial in x1 it has degree n + 1 and roots at

1, x j 1 for 2 j n

Page 12: 1526 exploiting symmetries

Weyl 1939 The Classical Groups: their invariants and representations

x1n x1

n L xnn xn

n

M O Mx1

1 x1 1 L xn

1 xn 1

x1x2L xn n

xi x j i j

xi2 1

i xix j 1

i j

is a symmetric polynomial. As a polynomial in x1 it has degree n + 1 and roots at

1, x j 1 for 2 j n

Page 13: 1526 exploiting symmetries

Weyl 1939 The Classical Groups: their invariants and representations: The Denominator Formulas

x1n 1

2 x1 n 1

2 L xnn 1

2 xn n 1

2

M O Mx1

12 x1

12 L xn

12 xn

12

x1x2L xn n 12

xi x j i j

xi 1 i

xix j 1 i j

x1n 1 x1

n1 L xnn 1 xn

n1

M O Mx1

0 x1 0 L xn

0 xn 0

x1x2L xn n 1

xi x j i j

2 xix j 1 i j

Page 14: 1526 exploiting symmetries
Page 15: 1526 exploiting symmetries

Desnanot-Jacobi adjoint matrix thereom (Desnanot for n ≤ 6 in 1819, Jacobi for general case in 1833M j

i is matrix M with row i and column j removed.

detM detM1

1 detM nn detM n

1 detM1n

detM1,n1,n

Given that the determinant of the empty matrix is 1 and the determinant of a 11 is the entry in that matrix, this uniquely defines the determinant for all square matrices.

Carl Jacobi (1804–1851)

Page 16: 1526 exploiting symmetries

detM detM1

1 detM nn detM n

1 detM1n

detM1,n1,n

det M detM1

1 detM nn detM n

1 detM1n

detM1,n1,n

det 1M detM

det a ji 1 i, j1

n ai a j

1i jn

David Robbins (1942–2003)

Page 17: 1526 exploiting symmetries

detM detM1

1 detM nn detM n

1 detM1n

detM1,n1,n

det M detM1

1 detM nn detM n

1 detM1n

detM1,n1,n

det

a bc d

ad bc

det

a b cd e fg h j

aej bdj afh 2 bfg cdh 3ceg

1 bde 1 fh

Page 18: 1526 exploiting symmetries

det

a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4

a1,1a2,2a3,3a4,4

a1,2a2,1a3,3a4,4 a1,1a2,3a3,2a4,4 a1,1a2,2a3,4a4,3 L sums over other permutations inversion number

3 1 1 a1,2a2,1a2,2 1 a2,3a3,4a4,2 L

3 1 1 2a1,2a2,1a2,2

1 a2,3a3,2a3,3 1a3,4a4,3 L

Page 19: 1526 exploiting symmetries

det

a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4

a1,1a2,2a3,3a4,4

a1,2a2,1a3,3a4,4 a1,1a2,3a3,2a4,4 a1,1a2,2a3,4a4,3 L sums over other permutations inversion number

3 1 1 a1,2a2,1a2,2 1 a2,3a3,4a4,2 L

3 1 1 2a1,2a2,1a2,2

1 a2,3a3,2a3,3 1a3,4a4,3 L

0 1 0 01 1 1 00 1 1 10 0 1 0

0 1 0 01 1 1 00 0 0 10 1 0 0

Page 20: 1526 exploiting symmetries

det

a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4

a1,1a2,2a3,3a4,4

a1,2a2,1a3,3a4,4 a1,1a2,3a3,2a4,4 a1,1a2,2a3,4a4,3 L sums over other permutations inversion number

3 1 1 a1,2a2,1a2,2 1 a2,3a3,4a4,2 L

3 1 1 2a1,2a2,1a2,2

1 a2,3a3,2a3,3 1a3,4a4,3 L

0 1 0 01 1 1 00 1 1 10 0 1 0

0 1 0 01 1 1 00 0 0 10 1 0 0

Page 21: 1526 exploiting symmetries

det

a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4

a1,1a2,2a3,3a4,4

a1,2a2,1a3,3a4,4 a1,1a2,3a3,2a4,4 a1,1a2,2a3,4a4,3 L sums over other permutations inversion number

3 1 1 a1,2a2,1a2,2 1 a2,3a3,4a4,2 L

3 1 1 2a1,2a2,1a2,2

1 a2,3a3,2a3,3 1a3,4a4,3 L

det xi, j Inv A

A ai , j 1 1 N A

xi, jai , j

i, j

Sum is over all alternating sign matrices, N(A) = # of –1’s

Page 22: 1526 exploiting symmetries

det

a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4

a1,1a2,2a3,3a4,4

a1,2a2,1a3,3a4,4 a1,1a2,3a3,2a4,4 a1,1a2,2a3,4a4,3 L sums over other permutations inversion number

3 1 1 a1,2a2,1a2,2 1 a2,3a3,4a4,2 L

3 1 1 2a1,2a2,1a2,2

1 a2,3a3,2a3,3 1a3,4a4,3 L

det xi, j Inv A

A ai , j 1 1 N A

xi, jai , j

i, j

xi x j Inv A 1 1 N A

x jn i ai , j

i, j

AAn

1i jn

Page 23: 1526 exploiting symmetries

n

1

2

3

4

5

6

7

8

9

An

1

2

7

42

429

7436

218348

10850216

911835460

= 2 3 7= 3 11 13= 22 11 132

= 22 132 17 19= 23 13 172 192

= 22 5 172 193 23

How many n n alternating sign matrices?

Page 24: 1526 exploiting symmetries

n

1

2

3

4

5

6

7

8

9

An

1

2

7

42

429

7436

218348

10850216

911835460

= 2 3 7= 3 11 13= 22 11 132

= 22 132 17 19= 23 13 172 192

= 22 5 172 193 23

Page 25: 1526 exploiting symmetries

n

1

2

3

4

5

6

7

8

9

An

1

2

7

42

429

7436

218348

10850216

911835460

There is exactly one 1 in the first

row

Page 26: 1526 exploiting symmetries

n

1

2

3

4

5

6

7

8

9

An

1

1+1

2+3+2

7+14+14+7

42+105+…

There is exactly one 1 in the first

row

Page 27: 1526 exploiting symmetries

1

1 1

2 3 2

7 14 14 7

42 105 135 105 42

429 1287 2002 2002 1287 429

Page 28: 1526 exploiting symmetries

1

1 1

2 3 2

7 14 14 7

42 105 135 105 42

429 1287 2002 2002 1287 429

+ + +

Page 29: 1526 exploiting symmetries

1

1 1

2 3 2

7 14 14 7

42 105 135 105 42

429 1287 2002 2002 1287 429

+ + +

1 0 0 0 00 ? ? ? ?0 ? ? ? ?0 ? ? ? ?0 ? ? ? ?

Page 30: 1526 exploiting symmetries

1

1 2/2 1

2 2/3 3 3/2 2

7 2/4 14 14 4/2 7

42 2/5 105 135 105 5/2 42

429 2/6 1287 2002 2002 1287 6/2 429

Page 31: 1526 exploiting symmetries

1

1 2/2 1

2 2/3 3 3/2 2

7 2/4 14 5/5 14 4/2 7

42 2/5 105 7/9 135 9/7 105 5/2 42

429 2/6 1287 9/14 2002 16/16 2002 14/9 1287 6/2 429

Page 32: 1526 exploiting symmetries

2/2

2/3 3/2

2/4 5/5 4/2

2/5 7/9 9/7 5/2

2/6 9/14 16/16 14/9 6/2

Page 33: 1526 exploiting symmetries

2

2 3

2 5 4

2 7 9 5

2 9 16 14 6

Page 34: 1526 exploiting symmetries

1+1

1+1 1+2

1+1 2+3 1+3

1+1 3+4 3+6 1+4

1+1 4+5 6+10 4+10 1+5

Numerators:

Page 35: 1526 exploiting symmetries

1+1

1+1 1+2

1+1 2+3 1+3

1+1 3+4 3+6 1+4

1+1 4+5 6+10 4+10 1+5

Conjecture 1:

Numerators:

An,k

An,k1

n 2k 1

n 1k 1

n 2n k 1

n 1n k 1

Page 36: 1526 exploiting symmetries

Conjecture 1:

Conjecture 2 (corollary of Conjecture 1):

An,k

An,k1

n 2k 1

n 1k 1

n 2n k 1

n 1n k 1

An

3 j 1 !n j !j0

n 1

1!4!7!L 3n 2 !n!n 1 !L 2n 1 !

Page 37: 1526 exploiting symmetries

Conjecture 2 (corollary of Conjecture 1):

An

3 j 1 !n j !j0

n 1

1!4!7!L 3n 2 !n!n 1 !L 2n 1 !

Exactly the formula found by George Andrews for counting descending plane partitions.

George Andrews Penn State

Page 38: 1526 exploiting symmetries

Conjecture 2 (corollary of Conjecture 1):

An

3 j 1 !n j !j0

n 1

1!4!7!L 3n 2 !n!n 1 !L 2n 1 !

Exactly the formula found by George Andrews for counting descending plane partitions. In succeeding years, the connection would lead to many important results on plane partitions.

George Andrews Penn State

Page 39: 1526 exploiting symmetries

A n; x xN A

AAn

A 1; x 1,

A 2; x 2,A 3; x 6 x,

A 4; x 24 16x 2x2 ,

A 5; x 120 200x 94x2 14x3 x4 ,

A 6; x 720 2400x 2684x2 1284x3 310x4 36x5 2x6

A 7; x 5040 24900x 63308x2 66158x3 38390x4 13037x5

2660x6 328x7 26x8 x9

Page 40: 1526 exploiting symmetries

A n; x xN A

AAn

A 1; x 1,

A 2; x 2,A 3; x 6 x,

A 4; x 24 16x 2x2 ,

A 5; x 120 200x 94x2 14x3 x4 ,

A 6; x 720 2400x 2684x2 1284x3 310x4 36x5 2x6

A 7; x 5040 24900x 63308x2 66158x3 38390x4 13037x5

2660x6 328x7 26x8 x9

xi x j Inv A 1 1 N A

x jn i ai , j

i, j

AAn

1i jn

A n;0 n!

A n;1 An 3i 1 !n i !i0

n 1

A n;2 2n(n 1)/2

Page 41: 1526 exploiting symmetries

A n; x xN A

AAn

A 1; x 1,

A 2; x 2,A 3; x 6 x,

A 4; x 24 16x 2x2 ,

A 5; x 120 200x 94x2 14x3 x4 ,

A 6; x 720 2400x 2684x2 1284x3 310x4 36x5 2x6

A 7; x 5040 24900x 63308x2 66158x3 38390x4 13037x5

2660x6 328x7 26x8 x9

A n; 3 3n n 1

2n n 1 3 j i 1

3 j i 1i, jnj i odd

Conjecture:

(MRR, 1983)

A n;0 n!

A n;1 An 3i 1 !n i !i0

n 1

A n;2 2n(n 1)/2

Page 42: 1526 exploiting symmetries

Mills & Robbins (suggested by Richard Stanley) (1991)

Symmetries of ASM’s

A n 3 j 1 !n j !j0

n 1

AV 2n 1 3 n2 3 j i 1

j i 2n 11i, j2n12 j

A n

AHT 2n 3 n n 1 /2 3 j i 2j i ni, j

A n

AQT 4n AHT 2n A n 2

Vertically symmetric ASM’s

Half-turn symmetric ASM’sQuarter-turn symmetric ASM’s

Page 43: 1526 exploiting symmetries

December, 1992

Zeilberger announces a proof that # of ASM’s equals

3 j 1 !n j !j0

n 1

Doron Zeilberger

Rutgers University

Page 44: 1526 exploiting symmetries

December, 1992

Zeilberger announces a proof that # of ASM’s equals

3 j 1 !n j !j0

n 1

1995 all gaps removed, published as “Proof of the Alternating Sign Matrix Conjecture,” Elect. J. of Combinatorics, 1996.

Page 45: 1526 exploiting symmetries

Zeilberger’s proof is an 84-page tour de force, but it still left open the original conjecture:

An,k

An,k1

n 2k 1

n 1k 1

n 2n k 1

n 1n k 1

Page 46: 1526 exploiting symmetries

1996 Kuperberg announces a simple proof

“Another proof of the alternating sign matrix conjecture,” International Mathematics Research Notices

Greg Kuperberg

UC Davis

Page 47: 1526 exploiting symmetries

“Another proof of the alternating sign matrix conjecture,” International Mathematics Research NoticesPhysicists have been

studying ASM’s for decades, only they call them square ice (aka the six-vertex model ).

1996 Kuperberg announces a simple proof

Page 48: 1526 exploiting symmetries

H O H O H O H O H O H

H H H H H

H O H O H O H O H O H

H H H H H

H O H O H O H O H O H

H H H H H

H O H O H O H O H O H

H H H H H

H O H O H O H O H O H

Page 49: 1526 exploiting symmetries
Page 50: 1526 exploiting symmetries

Horizontal 1

Vertical –1

Page 51: 1526 exploiting symmetries

southwest

northeast

northwest

southeast

Page 52: 1526 exploiting symmetries

N = # of verticalI = inversion number = N + # of SW

x2, y3

Page 53: 1526 exploiting symmetries

Anatoli IzerginVladimir Korepin

SUNY Stony Brook

1980’s

Page 54: 1526 exploiting symmetries

det1

xi y j axi y j

xi y j axi y j i, j1

nxi x j yi y j 1i jn

1 a 2N A an(n 1)/2 Inv A

AAn

xivert y j axi y j

SW, NE xi y j

NW, SE

Proof:LHS is symmetric polynomial in x’s and in y’s

Degree n – 1 in x1

By induction, LHS = RHS when x1 = y1

Sufficient to show that RHS is symmetric polynomial in x’s and in y’s

Page 55: 1526 exploiting symmetries

LHS is symmetric polynomial in x’s and in y’s

Degree n – 1 in x1

By induction, LHS = RHS when x1 = –y1

Sufficient to show that RHS is symmetric polynomial in x’s and in y’s — follows from Baxter’s triangle-to-triangle relation

Proof:

Rodney J. Baxter

Australian National University

Page 56: 1526 exploiting symmetries

a z 4 , xi z2 , yi 1

RHS z z 1 n n 1 z z 1 2N A

AAn

det1

xi y j axi y j

xi y j axi y j i, j1

nxi x j yi y j 1i jn

1 a 2N A an(n 1)/2 Inv A

AAn

xivert y j axi y j

SW, NE xi y j

NW, SE

Page 57: 1526 exploiting symmetries

det1

xi y j axi y j

xi y j axi y j i, j1

nxi x j yi y j 1i jn

1 a 2N A an(n 1)/2 Inv A

AAn

xivert y j axi y j

SW, NE xi y j

NW, SE

z e i / 3 : RHS 3 n n 1 /2 An ,

z e i / 4 : RHS 2 n n 1 /2 2N A

AAn ,

z e i /6 : RHS 1 n n 1 /2 3N A

AAn .

a z 4 , xi z2 , yi 1

RHS z z 1 n n 1 z z 1 2N A

AAn

Page 58: 1526 exploiting symmetries

1996

Doron Zeilberger uses this determinant to prove the original conjecture

“Proof of the refined alternating sign matrix conjecture,” New York Journal of Mathematics

Page 59: 1526 exploiting symmetries

2001, Kuperberg uses the power of the triangle-to-triangle relation to prove some of the conjectured formulas:

AV 2n 1 3 n2 3 j i 1

j i 2n 1i, j2n12 j

A n

AHT 2n 3 n n 1 /2 3 j i 2j i ni, j

A n

AQT 4n AHT 2n A n 2

Page 60: 1526 exploiting symmetries

Kuperberg, 2001: proved formulas for counting some new six-vertex models:

AUU 2n 3 n2

22n 3 j i 2j i 2n 11i, j2n1

2 j

1 1 0 10 1 1 00 0 0 00 0 1 0

Page 61: 1526 exploiting symmetries

Kuperberg, 2001: proved formulas for many symmetry classes of ASM’s and some new ones

1 1 0 10 1 1 00 0 0 00 0 1 0

AUU 2n 3 n2

22n 3 j i 2j i 2n 11i, j2n1

2 j

Page 62: 1526 exploiting symmetries

Soichi Okada, Nagoya University

1993, Okada finds the equivalent of the -determinant for the other Weyl Denominator Formulas.

2004, Okada shows that the formulas for counting ASM’s, including those subject to symmetry conditions, are simply the dimensions of certain irreducible representations, i.e. specializations of Weyl Character formulas.

Page 63: 1526 exploiting symmetries

s 1,1,K ,1 r

rrA2n 1

3 j 1 2

3i 1 2

j i1i j2n

3 n(n 1)/2 s 1,1,K ,1 3i 1 !n i !i0

n 1

Number of n n ASM’s is 3–n(n–1)/2

times the dimension of the irreducible representation of GL2n indexed by n 1,n 1,n 2,n 2,K ,1,1,0,0

A2n 1 ei e j 1 i j 2n n 1

2,n 32,K , n 1

2

Page 64: 1526 exploiting symmetries

dim Sp4n C r

C rrC2n

6n 2

3i 12

3 j 1

2

4n 2 i j

1i j2n

3 j 1

2

3i 1

2

j i

3n 1 3i 1

2

2n 1 ii1

2n

Number of (2n+1) (2n+1) vertically symmetric ASM’s is 3–

n(n–1) times the dimension of the irreducible representation of Sp4n indexed by n 1,n 1,n 2,n 2,K ,1,1,0,0

C2n ei e j 1 i j 2n U 2ei 1 i 2n C

12

r rC2n

2n,2n 1,K ,1

Page 65: 1526 exploiting symmetries

NEW for 2004:

Number of (4n+1) (4n+1) vertically and horizontally symmetric ASM’s is 2–2n 3–n(2n–1)

times

n 1,n 1,n 2,n 2,K ,1,1,0,0 n 1

2,n 32,n 3

2,K , 32, 3

2, 12

dim Sp4n dim %O4n

C rC rrC2n

D rD rrD2n

C2n ei e j 1 i j 2n U 2ei 1 i 2n C 2n,2n 1,K ,1

D2n ei e j 1 i j 2n D 2n 1,2n 2,K ,1,0

Page 66: 1526 exploiting symmetries

Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture Cambridge University Press & MAA, 1999

OKADA, Enumeration of Symmetry Classes of Alternating Sign Matrices and Characters of Classical Groups, arXiv:math.CO/0408234 v1 18 Aug 2004