15. anova for balanced split-plot experiments among whole-plot-factor marginal means inferences on )

47
15. ANOVA for Balanced Split-Plot Experiments Copyright c 2018 (Iowa State University) 15. Statistics 510 1 / 47

Upload: ngoduong

Post on 17-May-2018

220 views

Category:

Documents


4 download

TRANSCRIPT

15. ANOVA for Balanced

Split-Plot Experiments

Copyright c©2018 (Iowa State University) 15. Statistics 510 1 / 47

A Traditional Split-Plot Experiment

Field

Block 1

Block 2

Block 3

Block 4 Genotype A Genotype B Genotype C

Genotype A Genotype B Genotype C

Genotype A Genotype B Genotype C

Genotype A Genotype B Genotype C

0 50 100 150 50 0 100 150 150 0 100 50

150 0 100 50 0 100 50 150 100 0 50 150

100 150 50 0 0 50 100 150 50 0 100 150

0 150 50 100 150 0 100 50 50 0 150 100

Whole Plot or Main Plot

Split Plot or

Sub Plot

Copyright c©2018 (Iowa State University) 15. Statistics 510 2 / 47

A Model for Data from the Traditional Split-Plot

Experiment

Genotype i = 1, 2, 3, Fertilizer j = 1, 2, 3, 4, Block k = 1, 2, 3, 4

yijk = µij + bk + wik + eijk

µij = mean for Genotype i, Fertilizer j

bk = random block effect

wik = random whole-plot exp. unit effect

eijk = random error = random split-plot exp. unit effect

Copyright c©2018 (Iowa State University) 15. Statistics 510 3 / 47

Table of Means and Marginal Means

Fertilizer AmountGenotype 0 50 100 150

A µ11 µ12 µ13 µ14 µ1·

B µ21 µ22 µ23 µ24 µ2·

C µ31 µ32 µ33 µ34 µ3·

µ·1 µ·2 µ·3 µ·4 µ··

Copyright c©2018 (Iowa State University) 15. Statistics 510 4 / 47

Best Linear Unbiased Estimators

Because the experiment is balanced, the GLS estimator is equalto the OLS estimator for any estimable Cβ:

CβΣ = C(X′Σ−1X)−X′Σ−1y = C(X′X)−X′y = Cβ.

Because the elements of E(y) are {µij : i = 1, 2, 3; j = 1, 2, 3, 4},the estimable quantities are all linear combinations of the cellmeans {µij : i = 1, 2, 3; j = 1, 2, 3, 4}.

The BLUE of∑3

i=1

∑4j=1 cijµij is

∑3i=1

∑4j=1 cijyij·.

Copyright c©2018 (Iowa State University) 15. Statistics 510 5 / 47

Table of Best Linear Unbiased Estimates

Fertilizer AmountGenotype 0 50 100 150

A y11· y12· y13· y14· y1··

B y21· y22· y23· y24· y2··

C y31· y32· y33· y34· y3··

y·1· y·2· y·3· y·4· y···

Copyright c©2018 (Iowa State University) 15. Statistics 510 6 / 47

ANOVA Table for the Traditional Split-Plot Design

Source DF

Blocks 4− 1 = 3

Genotypes 3− 1 = 2

Blocks× Geno (4− 1)(3− 1) = 6

Fert 4− 1 = 3

Geno× Fert (3− 1)(4− 1) = 6

Blocks× Fert (4− 1)(4− 1)

+Blocks× Geno× Fert +(4− 1)(3− 1)(4− 1) = 27

C.Total 48− 1 = 47

Copyright c©2018 (Iowa State University) 15. Statistics 510 7 / 47

ANOVA Table for the Traditional Split-Plot Design

Source DF

Blocks 4− 1 = 3

Genotypes 3− 1 = 2

Blocks× Geno (4− 1)(3− 1) = 6

Fert 4− 1 = 3

Geno× Fert (3− 1)(4− 1) = 6

Error 3(4− 1)(4− 1) = 27

C.Total 48− 1 = 47

Copyright c©2018 (Iowa State University) 15. Statistics 510 8 / 47

Why does SSBlocks×Fert + SSBlocks×Geno×Fert = SSError?

There are no terms in our model corresponding toBlock × Fert combinations; thus, there is no reason to devotea separate line of our ANOVA table to Block × Fert.

Also, it can be shown that

E(MSBlocks×Fert) = E(MSBlocks×Geno×Fert) = σ2e

Thus, it makes sense to estimate σ2e with an inverse variance

weighted average of independent unbiased estimators:

Copyright c©2018 (Iowa State University) 15. Statistics 510 9 / 47

For this slide only, let

1 = Blocks× Fert and 2 = Blocks× Geno× Fert.

For ` = 1, 2, MS` ∼E(MS`)

df`χ2

df` =⇒ Var(MS`) = 2σ4e/df`.

Var−1(MS1)MS1 + Var−1(MS2)MS2

Var−1(MS1) + Var−1(MS2)=

df12σ4

eMS1 + df2

2σ4eMS2

df12σ4

e+ df2

2σ4e

=df1MS1 + df2MS2

df1 + df2

=SS1 + SS2

df1 + df2

Copyright c©2018 (Iowa State University) 15. Statistics 510 10 / 47

Thus, we combine the Blocks× Fert and Blocks× Geno× Fert

lines of the ANOVA table and label the resulting line as Error.

SSBlocks×Fert + SSBlocks×Geno×Fert = SSError

dfBlocks×Fert + dfBlocks×Geno×Fert = dfError

MSError = SSError/dfError

E(MSError) = σ2e

Copyright c©2018 (Iowa State University) 15. Statistics 510 11 / 47

Now let’s look at the ANOVA table and the analyses that can bedone with it in more detail.

For greater generality, let

w = the number of levels of the whole-plot treatment factor,

s = the number of levels of the split-plot treatment factor, and

b = the number of blocks.

Copyright c©2018 (Iowa State University) 15. Statistics 510 12 / 47

ANOVA Table for the Traditional Split-Plot Design

Source DF

Blocks b− 1

Genotypes w− 1

Blocks× Geno (b− 1)(w− 1)

Fert s− 1

Geno× Fert (w− 1)(s− 1)

Blocks× Fert (b− 1)(s− 1)

+Blocks× Geno× Fert +(b− 1)(w− 1)(s− 1)

C.Total bws− 1

Copyright c©2018 (Iowa State University) 15. Statistics 510 13 / 47

ANOVA Table for the Traditional Split-Plot Design

Source DF

Blocks b− 1

Genotypes w− 1

Blocks× Geno (b− 1)(w− 1)

Fert s− 1

Geno× Fert (w− 1)(s− 1)

Error w(b− 1)(s− 1)

C.Total bws− 1

Copyright c©2018 (Iowa State University) 15. Statistics 510 14 / 47

ANOVA Table Sums of Squares

Source Sum of Squares

Block∑w

i=1

∑sj=1

∑bk=1(y··k − y···)2

Geno∑w

i=1

∑sj=1

∑bk=1(yi·· − y···)2

Block × Geno∑w

i=1

∑sj=1

∑bk=1(yi·k − yi·· − y··k + y···)2

Fert∑w

i=1

∑sj=1

∑bk=1(y·j· − y···)2

Geno× Fert∑w

i=1

∑sj=1

∑bk=1(yij· − yi·· − y·j· + y···)2

Error∑w

i=1

∑sj=1

∑bk=1(yijk − yi·k − yij· + yi··)

2

C.Total∑w

i=1

∑sj=1

∑bk=1(yijk − y···)2

Copyright c©2018 (Iowa State University) 15. Statistics 510 15 / 47

Simplified ANOVA Table Sums of Squares

Source Sum of Squares

Block ws∑b

k=1(y··k − y···)2

Geno sb∑w

i=1(yi·· − y···)2

Block × Geno s∑w

i=1

∑bk=1(yi·k − yi·· − y··k + y···)2

Fert wb∑s

j=1(y·j· − y···)2

Geno× Fert b∑w

i=1

∑sj=1(yij· − yi·· − y·j· + y···)2

Error∑w

i=1

∑sj=1

∑bk=1(yijk − yi·k − yij· + yi··)

2

C.Total∑w

i=1

∑sj=1

∑bk=1(yijk − y···)2

Copyright c©2018 (Iowa State University) 15. Statistics 510 16 / 47

E(MSGeno) =sb

w− 1

w∑i=1

E(yi·· − y···)2

=sb

w− 1

w∑i=1

E(µi· − µ·· + wi· − w·· + ei·· − e···)2

= sb{∑w

i=1(µi· − µ··)2

w− 1+ E

[∑wi=1(wi· − w··)2

w− 1

]+ E

[∑wi=1(ei·· − e···)2

w− 1

]}

= sb∑w

i=1(µi· − µ··)2

w− 1+ sb

σ2w

b+ sb

σ2e

sb

= sb∑w

i=1(µi· − µ··)2

w− 1+ sσ2

w + σ2e

Copyright c©2018 (Iowa State University) 15. Statistics 510 17 / 47

E(MSBlock×Geno) =s

(w− 1)(b− 1)

w∑i=1

b∑k=1

E(yi·k − yi·· − y··k + y···)2

=s

(w− 1)(b− 1)

w∑i=1

b∑k=1

E(wik − wi· − w·k + w·· + ei·k − ei·· − e··k + e···)2

=s

(w− 1)(b− 1)E

[w∑

i=1

b∑k=1

(wik − wi·)2 − 2

w∑i=1

b∑k=1

(wik − wi·)(w·k − w··)

+

w∑i=1

b∑k=1

(w·k − w··)2 + e2 sum

]

=s

(w− 1)(b− 1)E

[w∑

i=1

b∑k=1

(wik − wi·)2 − w

b∑k=1

(w·k − w··)2 + e2 sum

]=

s(w− 1)(b− 1)

[w(b− 1)σ2w − w(b− 1)σ2

w/w + E(e2 sum)]

Copyright c©2018 (Iowa State University) 15. Statistics 510 18 / 47

It can be shown that

E(e2 sum) = E

[w∑

i=1

b∑k=1

(ei·k − ei·· − e··k + e···)2

]

=(w− 1)(b− 1)

sσ2

e .

Putting it all together yields

E(MSBlock×Geno) = sσ2w + σ2

e .

Copyright c©2018 (Iowa State University) 15. Statistics 510 19 / 47

Source Expected Mean Squares

Block

Geno sσ2w + σ2

e + sbw−1

∑wi=1(µi· − µ··)2

Block × Geno sσ2w + σ2

e

Fert

Geno× Fert

Error

Copyright c©2018 (Iowa State University) 15. Statistics 510 20 / 47

The Test for Whole-Plot Factor Main Effects

To test for genotype main effects, i.e.,

H0 : µ1· = · · · = µw· ⇐⇒ H0 :sb

w− 1

w∑i=1

(µi· − µ··)2 = 0,

compare MSGenoMSBlock×Geno

to a central F distribution with w− 1 and(w− 1)(b− 1) degrees of freedom.

Copyright c©2018 (Iowa State University) 15. Statistics 510 21 / 47

Comparison of Whole-Plot Factor Marginal Means

The BLUE of µ1· − µ2· is y1·· − y2··.

Var(y1·· − y2··) = Var(µ1· − µ2· + w1· − w2· + e1·· − e2··)

= 2σ2w

b + 2σ2e

sb

= 2sb(sσ2

w + σ2e ) = 2

sbE(MSBlock×Geno)

Var(y1·· − y2··) =2sb

MSBlock×Geno

Copyright c©2018 (Iowa State University) 15. Statistics 510 22 / 47

We can use

t =y1·· − y2·· − (µ1· − µ2·)√

2sbMSBlock×Geno

∼ t(w−1)(b−1)

to get tests of H0 : µ1· = µ2·

or construct confidence intervals for µ1· − µ2·.

Copyright c©2018 (Iowa State University) 15. Statistics 510 23 / 47

Furthermore, suppose C is a matrix whose rows are contrastvectors so that C1 = 0. Then

Var

C

y1··...

yw··

= Var

C

b· + w1· + e1··

...

b· + ww· + ew··

= Var

C1b· + C

w1· + e1··

...

ww· + ew··

= C Var

w1· + e1··...

ww· + ew··

C′

= C(σ2

w

b+σ2

e

sb

)IC′ =

(σ2

w

b+σ2

e

sb

)CC′ =

E(MSBlock×Geno)

sbCC′

Copyright c©2018 (Iowa State University) 15. Statistics 510 24 / 47

An F statistic, with q and (w− 1)(b− 1) degrees of freedom, fortesting

H0 : C

µ1·...µw·

= 0, is

F =

C

y1·...

yw·

′ [

MSBlock×Genosb CC′

]−1

C

y1··...

yw··

q,

where q is the number of rows of C (which must have full rowrank to ensure that the hypothesis is testable).

Copyright c©2018 (Iowa State University) 15. Statistics 510 25 / 47

Inference for the Split-Plot Factor

E(MSFert) =wb

s− 1

s∑j=1

E(y·j· − y···)2

=wb

s− 1

s∑j=1

E(µ·j − µ·· + e·j· − e···)2

=wb

s− 1

s∑j=1

(µ·j − µ··)2 + σ2e .

Likewise, it can be shown that

E(MSError) = σ2e .

Copyright c©2018 (Iowa State University) 15. Statistics 510 26 / 47

Source Expected Mean Squares

Block

Geno sσ2w + σ2

e + sbw−1

∑wi=1(µi· − µ··)2

Block × Geno sσ2w + σ2

e

Fert σ2e + wb

s−1

∑sj=1(µ·j − µ··)2

Geno× Fert

Error σ2e

Copyright c©2018 (Iowa State University) 15. Statistics 510 27 / 47

The Test for Split-Plot Factor Main Effects

To test for fertilizer main effects, i.e.,

H0 : µ·1 = · · · = µ·s ⇐⇒ H0 :wb

s− 1

s∑j=1

(µ·j − µ··)2 = 0,

compare MSFertMSError

to a central F distribution with s− 1 andw(s− 1)(b− 1) degrees of freedom.

Copyright c©2018 (Iowa State University) 15. Statistics 510 28 / 47

Comparison of Split-Plot Factor Marginal Means

The BLUE of µ·1 − µ·2 is y·1· − y·2·.

y·1· − y·2· = (µ·1 + b· + w·· + e·1·)− (µ·2 + b· + w·· + e·2·)

Var(y·1· − y·2·) = Var(µ·1 − µ·2 + e·1· − e·2·)

= 2wbσ

2e = 2

wbE(MSError)

Var(y·1· − y·2·) = 2wbMSError

Copyright c©2018 (Iowa State University) 15. Statistics 510 29 / 47

We can use

t =y·1· − y·2· − (µ·1 − µ·2)√

2wbMSError

∼ tw(s−1)(b−1)

to get tests of H0 : µ·1 = µ·2

or to construct confidence intervals for µ·1 − µ·2.

Copyright c©2018 (Iowa State University) 15. Statistics 510 30 / 47

Furthermore, suppose C is a matrix with rows that are contrastvectors so that C1 = 0. Then

Var

C

y·1·...

y·s·

= Var

C

b· + w·· + e·1·

...b· + w·· + e·s·

= Var

C1b· + C1w·· + C

e·1·...

e·s·

= C Var

e·1·...

e·s·

C′

= C(σ2

e

wb

)IC′ =

E(MSError)

wbCC′

Copyright c©2018 (Iowa State University) 15. Statistics 510 31 / 47

An F statistic, with q and w(s− 1)(b− 1) degrees of freedom, fortesting

H0 : C

µ·1...µ·s

= 0, is

F =

C

y·1·...

y·s·

′ [

MSErrorwb CC′

]−1

C

y·1·...

y·s·

q

where q is the number of rows of C (which must have full rowrank to ensure that the hypothesis is testable).

Copyright c©2018 (Iowa State University) 15. Statistics 510 32 / 47

Inference for Interactions

E(MSGeno×Fert) =b

(w− 1)(s− 1)

w∑i=1

s∑j=1

E(yij· − yi·· − y·j· + y···)2

=b

(w− 1)(s− 1)

w∑i=1

s∑j=1

E(µij − µi· − µ·j + µ·· + eij· − ei·· − e·j· + e···)2

= · · ·

=b

(w− 1)(s− 1)

w∑i=1

s∑j=1

(µij − µi· − µ·j + µ··)2 + σ2

e .

Copyright c©2018 (Iowa State University) 15. Statistics 510 33 / 47

It can be shown that

µij − µi· − µ·j + µ·· = 0 ∀ i, j

is equivalent to

µij − µij∗ − µi∗j + µi∗j∗ = 0 ∀ i 6= i∗, j 6= j∗.

Thus,b

(w− 1)(s− 1)

w∑i=1

s∑j=1

(µij − µi· − µ·j + µ··)2 = 0

is equivalent to no interactions between genotypes andfertilizers.

Copyright c©2018 (Iowa State University) 15. Statistics 510 34 / 47

Source Expected Mean Squares

Block

Geno sσ2w + σ2

e + sbw−1

∑wi=1(µi· − µ··)2

Block × Geno sσ2w + σ2

e

Fert σ2e + wb

s−1

∑sj=1(µ·j − µ··)2

Geno× Fert σ2e + b

(w−1)(s−1)

∑wi=1

∑sj=1(µij − µi· − µ·j + µ··)

2

Error σ2e

Copyright c©2018 (Iowa State University) 15. Statistics 510 35 / 47

The Test for Whole × Split Interaction Effects

To test for genotype × fertilizer interaction effects, i.e.,

H0 : µij − µi· − µ·j + µ·· = 0 ∀ i, j⇐⇒

H0 :b

(w− 1)(s− 1)

w∑i=1

s∑j=1

(µij − µi· − µ·j + µ··)2 = 0,

compare MSGeno×FertMSError

to a central F distribution with (w− 1)(s− 1)

and w(s− 1)(b− 1) degrees of freedom.

Copyright c©2018 (Iowa State University) 15. Statistics 510 36 / 47

Inference for Simple Effects

Consider the difference between two fertilizer means within agenotype, e.g., µ11 − µ12 whose BLUE is y11· − y12·.

Var(y11· − y12·) = Var(µ11 − µ12 + b· − b· + w1· − w1· + e11· − e12·)

= 2bσ

2e

Var(y11· − y12·) = 2bMSError

Copyright c©2018 (Iowa State University) 15. Statistics 510 37 / 47

We can use

t =y11· − y12· − (µ11 − µ12)√

2bMSError

∼ tw(s−1)(b−1)

to get tests of H0 : µ11 = µ12

or construct confidence intervals for µ11 − µ12.

Copyright c©2018 (Iowa State University) 15. Statistics 510 38 / 47

Now consider the difference between two genotype meanswithin a fertilizer, e.g., µ11 − µ21 whose BLUE is y11· − y21·.

Var(y11· − y21·) = Var(µ11 − µ21 + w1· − w2· + e11· − e21·)

= 2σ2w

b + 2σ2e

b

= 2b(σ2

w + σ2e ).

This variance is not a constant times any expected mean squarefrom our ANOVA table.

Copyright c©2018 (Iowa State University) 15. Statistics 510 39 / 47

We need an estimator of σ2w + σ2

e . We have

E(MSBlock×Geno) = sσ2w + σ2

e , E(MSError) = σ2e , and

E(

1s

MSBlock×Geno +s− 1

sMSError

)= σ2

w +σ2

e

s+

(s− 1)σ2e

s

= σ2w + σ2

e .

Thus,1s

MSBlock×Geno +s− 1

sMSError

is an unbiased estimator of σ2w + σ2

e .

Copyright c©2018 (Iowa State University) 15. Statistics 510 40 / 47

It follows that

Var(y11· − y21·) ≡2sb

MSBlock×Geno +2(s− 1)

sbMSError

is an unbiased estimator of Var(y11· − y21·).

We can use

y11· − y21· − (µ11 − µ21)√Var(y11· − y21·)

·∼ td, with d degrees of freedom

computed by Cochran-Satterthwaite to get approximate tests ofH0 : µ11 = µ21 or to construct approximate confidence intervalsfor µ11 − µ21.

Copyright c©2018 (Iowa State University) 15. Statistics 510 41 / 47

Full Table of Expected Mean Squares

Source Expected Mean Squares

Block wsσ2b + sσ2

w + σ2e

Geno sσ2w + σ2

e + sbw−1

∑wi=1(µi· − µ··)2

Block × Geno sσ2w + σ2

e

Fert σ2e + wb

s−1

∑sj=1(µ·j − µ··)2

Geno× Fert σ2e + b

(w−1)(s−1)

∑wi=1

∑sj=1(µij − µi· − µ·j + µ··)

2

Error σ2e

Copyright c©2018 (Iowa State University) 15. Statistics 510 42 / 47

Inferences for Cell Mean µij

Var(yij·) = Var(µij + b· + wi· + eij·)

=σ2

b

b+σ2

w

b+σ2

e

b

We can construct the unbiased estimator

Var(yij·) =1

wbs[MSBlock + (w− 1) MSBlock×Geno + w(s− 1) MSError]

with approximate degrees of freedom fromCochran-Satterthwaite.

Copyright c©2018 (Iowa State University) 15. Statistics 510 43 / 47

Inferences for Whole-Plot-Factor Means µi·

Var(yi··) = Var(µi· + b· + wi· + ei··)

=σ2

b

b+σ2

w

b+σ2

e

sb

This can be estimated with a linear combination of meansquares.

Copyright c©2018 (Iowa State University) 15. Statistics 510 44 / 47

If block effects are considered fixed rather than random,

Var(yi··) = Var(µi· + b· + wi· + ei··)

=σ2

w

b+σ2

e

sb

=1sb

(sσ2

w + σ2e

)We can estimate this variance by 1

sbMSBlock×Geno with(w− 1)(b− 1) degrees of freedom.

Copyright c©2018 (Iowa State University) 15. Statistics 510 45 / 47

Inferences for Split-Plot-Factor Means µ·j

If block effects are considered random,

Var(y·j·) = Var(µ·j + b· + w·· + e·j·)

=σ2

b

b+σ2

w

wb+σ2

e

wb

If block effects are considered fixed,

Var(y·j·) = Var(µ·j + b· + w·· + e·j·)

=σ2

w

wb+σ2

e

wb.

Both can be estimated by linear combinations of mean squares.

Copyright c©2018 (Iowa State University) 15. Statistics 510 46 / 47

Summary of ANOVA for a Balanced Split-Plot

Use whole-plot-error mean square for inferences oncontrasts among whole-plot-factor marginal means

Use split-plot-error mean square for inferences oncontrasts among split-plot-factor marginal means

whole× split interactions

a simple effect within a whole-plot treatment

Construct a linear combination of mean squares forinferences on

a simple effect within a split-plot treatment

a comparison within neither whole-plot nor split-plot treatments

(e.g., µ11 − µ22)

most means

Copyright c©2018 (Iowa State University) 15. Statistics 510 47 / 47