11X1 T10 01 first derivative (2011)

Download 11X1 T10 01 first derivative (2011)

Post on 06-Jul-2015

508 views

Category:

Education

0 download

Embed Size (px)

TRANSCRIPT

<ul><li> 1. Geometrical Applications of DifferentiationThe First Derivative</li></ul> <p> 2. Geometrical Applicationsof Differentiation ddyThe First Derivative y, f x , f x , dx dx 3. Geometrical Applicationsof Differentiation ddyThe First Derivative y, f x , f x , dx dxdy measures the slope of the tangent to a curvedx 4. Geometrical Applicationsof Differentiation d dyThe First Derivative y, f x , f x ,dx dxdy measures the slope of the tangent to a curvedx If f x 0, the curve is increasing 5. Geometrical Applicationsof Differentiation d dyThe First Derivative y, f x , f x ,dx dxdy measures the slope of the tangent to a curvedx If f x 0, the curve is increasing If f x 0, the curve is decreasing 6. Geometrical Applicationsof Differentiation d dyThe First Derivative y, f x , f x ,dx dxdy measures the slope of the tangent to a curvedx If f x 0, the curve is increasing If f x 0, the curve is decreasing If f x 0, the curve is stationary 7. Geometrical Applicationsof Differentiation d dyThe First Derivative y, f x , f x ,dx dxdy measures the slope of the tangent to a curvedx If f x 0, the curve is increasing If f x 0, the curve is decreasing If f x 0, the curve is stationary e.g. For the curve y 3x 2 x 3 , find all of the stationary pointsand determine their nature.Hence sketch the curve 8. Geometrical Applicationsof Differentiation d dyThe First Derivative y, f x , f x ,dx dxdy measures the slope of the tangent to a curvedx If f x 0, the curve is increasing If f x 0, the curve is decreasing If f x 0, the curve is stationary e.g. For the curve y 3x 2 x 3 , find all of the stationary pointsand determine their nature.Hence sketch the curvedy 6 x 3x 2dx 9. dyStationary points occur when0 dx 10. dy Stationary points occur when0dxi.e. 6 x 3x 2 0 11. dy Stationary points occur when0dxi.e. 6 x 3x 2 0 3x2 x 0x 0 or x 2 12. dy Stationary points occur when0dxi.e. 6 x 3x 2 0 3x2 x 0 x 0 or x 2 stationary points occur at 0,0 and 2,4 13. dyStationary points occur when0 dxi.e. 6 x 3x 2 0 3x2 x 0x 0 or x 2 stationary points occur at 0,0 and 2,40,0 14. dyStationary points occur when0 dxi.e. 6 x 3x 2 0 3x2 x 0x 0 or x 2 stationary points occur at 0,0 and 2,40,0 xdydx 15. dyStationary points occur when0 dxi.e. 6 x 3x 2 0 3x2 x 0x 0 or x 2 stationary points occur at 0,0 and 2,40,0 x0dydx 16. dyStationary points occur when0 dxi.e. 6 x 3x 2 0 3x2 x 0x 0 or x 2 stationary points occur at 0,0 and 2,40,0 x0dy0dx 17. dyStationary points occur when0 dxi.e. 6 x 3x 2 0 3x2 x 0x 0 or x 2 stationary points occur at 0,0 and 2,40,0 x 0 0dy0dx 18. dyStationary points occur when0 dxi.e. 6 x 3x 2 0 3x2 x 0x 0 or x 2 stationary points occur at 0,0 and 2,40,0 x 0 0 0dy0dx 19. dyStationary points occur when 0dxi.e. 6 x 3x 2 0 3x2 x 0x 0 or x 2 stationary points occur at 0,0 and 2,40,0 x 0(-1) 0 0dy 0dx 20. dyStationary points occur when 0dxi.e. 6 x 3x 2 0 3x2 x 0x 0 or x 2 stationary points occur at 0,0 and 2,40,0 x 0(-1) 0 0dy(-9) 0dx 21. dyStationary points occur when 0dxi.e. 6 x 3x 2 0 3x2 x 0x 0 or x 2 stationary points occur at 0,0 and 2,40,0 x 0(-1) 0 0 (1)dy(-9) 0dx 22. dyStationary points occur when 0dxi.e. 6 x 3x 2 0 3x2 x 0x 0 or x 2 stationary points occur at 0,0 and 2,40,0 x 0(-1) 0 0 (1)dy(-9) 0(3)dx 23. dyStationary points occur when 0dxi.e. 6 x 3x 2 0 3x2 x 0x 0 or x 2 stationary points occur at 0,0 and 2,40,0 x 0(-1) 0 0 (1)dy(-9) 0(3)dx 0,0 is a minimum turning point 24. dyStationary points occur when 0dxi.e. 6 x 3x 2 0 3x2 x 0x 0 or x 2 stationary points occur at 0,0 and 2,40,0 x 0(-1) 0 0 (1)dy(-9) 0(3)dx 0,0 is a minimum turning point2,4 25. dyStationary points occur when 0dxi.e. 6 x 3x 2 0 3x2 x 0x 0 or x 2 stationary points occur at 0,0 and 2,40,0 x 0(-1) 0 0 (1)dy(-9) 0(3)dx 0,0 is a minimum turning point2,4 xdydx 26. dyStationary points occur when 0dxi.e. 6 x 3x 2 0 3x2 x 0x 0 or x 2 stationary points occur at 0,0 and 2,40,0 x 0(-1) 0 0 (1)dy(-9) 0(3)dx 0,0 is a minimum turning point2,4 x 2dydx 27. dyStationary points occur when 0dxi.e. 6 x 3x 2 0 3x2 x 0x 0 or x 2 stationary points occur at 0,0 and 2,40,0 x 0(-1) 0 0 (1)dy(-9) 0(3)dx 0,0 is a minimum turning point2,4 x 2dy 0dx 28. dyStationary points occur when 0dxi.e. 6 x 3x 2 0 3x2 x 0x 0 or x 2 stationary points occur at 0,0 and 2,40,0 x 0(-1) 0 0 (1)dy(-9) 0(3)dx 0,0 is a minimum turning point2,4 x 22dy 0dx 29. dyStationary points occur when 0dxi.e. 6 x 3x 2 0 3x2 x 0x 0 or x 2 stationary points occur at 0,0 and 2,40,0 x 0(-1) 0 0 (1)dy(-9) 0(3)dx 0,0 is a minimum turning point2,4 x 22 2dy 0dx 30. dyStationary points occur when 0dxi.e. 6 x 3x 2 0 3x2 x 0x 0 or x 2 stationary points occur at 0,0 and 2,40,0 x 0(-1) 0 0 (1)dy(-9) 0(3)dx 0,0 is a minimum turning point2,4 x 2(1)2 2dy 0dx 31. dyStationary points occur when 0dxi.e. 6 x 3x 2 0 3x2 x 0x 0 or x 2 stationary points occur at 0,0 and 2,40,0 x 0(-1) 0 0 (1)dy(-9) 0(3)dx 0,0 is a minimum turning point2,4 x 2(1)2 2dy(3) 0dx 32. dyStationary points occur when 0dxi.e. 6 x 3x 2 0 3x2 x 0x 0 or x 2 stationary points occur at 0,0 and 2,40,0 x 0(-1) 0 0 (1)dy(-9) 0(3)dx 0,0 is a minimum turning point2,4 x 2(1)2 2 (3)dy(3) 0dx 33. dyStationary points occur when 0dxi.e. 6 x 3x 2 0 3x2 x 0x 0 or x 2 stationary points occur at 0,0 and 2,40,0 x 0(-1) 0 0 (1)dy(-9) 0(3)dx 0,0 is a minimum turning point2,4 x 2(1)2 2 (3)dy(3) 0(-9)dx 34. dyStationary points occur when 0dxi.e. 6 x 3x 2 0 3x2 x 0x 0 or x 2 stationary points occur at 0,0 and 2,40,0 x 0(-1) 0 0 (1)dy(-9) 0(3)dx 0,0 is a minimum turning point2,4 x 2(1)2 2 (3)dy(3) 0(-9)dx 2,4 is a maximum turning point 35. yx 36. yx 37. y2,4x 38. y2,4xy 3x 2 x 3 39. Exercise 10A; 1, 2ace, 4, 5, 6ac, 7, 8, 9ace etc, 11, 12, 13, 15ace, 16, 17Exercise 10B; 1ad, 2ac, 3ac, 5, 6, 7ac, 8, 10, 12</p>