1[1][1][1].sdh basics

66
1 SDH BASICS What is SDH? Characteristics of SDH ITU-T’s Recommendations Bit Rates Path and Section Review Questions SDH TRANSMISSION SYSTEM

Upload: labee-singh-parihar

Post on 19-Nov-2014

238 views

Category:

Documents


1 download

DESCRIPTION

SDH

TRANSCRIPT

Page 1: 1[1][1][1].SDH Basics

1

SDH BASICS

What is SDH? Characteristics of SDH ITU-T’s Recommendations Bit Rates Path and Section Review Questions

SDH TRANSMISSION SYSTEM

Page 2: 1[1][1][1].SDH Basics

2

What is SDH?

• A New Digital Hierarchy· 155.52 Mb/s, 622.08 Mb/s, 2488.32 Mb/s, 9953.28 Mb/s,

39813.120Mb/s

· Existing PDH and future ATM signals are carried over the SDH system.

• Very basic functions are same as PDH.· Multiplex low bit rate digital signals to higher bit rate

and transmit large information efficiently.

Page 3: 1[1][1][1].SDH Basics

3

What are the differences ?

Synchronous Network

Basically, all network elements work on a single clock source.

• Abundant Overhead Bits

To carry large information for Network Management.

• Unified Interface and Multiplexing Specifications

Common to all countries.

Standardized optical interfaces.

Page 4: 1[1][1][1].SDH Basics

4

What are the benefits? (1) - Synchronous Network -

Simple multiplexing process Easy access to tributary signals in a multiplexed high

bit rate signal.ADD/DROP distribution

RING survivabilityCROSS CONNECT capacity management

band width managementprotection route diversity

1 40M 140M

34 M 34M

8M 8M

2M

DD F

ADD /DR O P MU X

PD HSTM -1 ST M -1

M IN I X -C O NN

2M

S D H

Simple Access to Tributaries

Page 5: 1[1][1][1].SDH Basics

5

What are the benefits? (2) - Overhead Bits –

• Realization of highly advanced Network Management System for:

Fault management

Configuration management

Performance management

Security management

Accounting management

Page 6: 1[1][1][1].SDH Basics

6

What are benefits SDH? (3) - Unified Interface –

• Multi-vendor Environment

• International Connection

Page 7: 1[1][1][1].SDH Basics

7

What are SDH? - in conclusion –

• SDH is the infrastructure for the telecommunication network of the 21st century, providing board band and intelligent services.

Page 8: 1[1][1][1].SDH Basics

8

ITU-T’s Recommendations on SDH

G.707 Network Node Interface for the SDH

G.773 Protocol Suits for Q-interface

G.774 SDH Management Information Model for the Network Element View

G.781 Synchronization layer functions

G.782 Types and General Characteristics of SDH Multiplexing Equipment

G.783 Characteristics of SDH Multiplexing Equipment Functional Blocks

G.784 SDH Management

G.803 Architecture of Transport Networks Based on the SDH

G.813 Timing characteristics of SDH equipment slave clocks(SEC)

G.842 Interworking of SDH network protection architectures

G.957 Optical Interfaces for Equipments and Systems Relating to SDH

G.958 Digital Line Systems Based on SDH for Use on Optical Fiber Cables

Page 9: 1[1][1][1].SDH Basics

9

SDH Bit Rates

SDHG.707

STM: Synchronous Transport Module

CEPT North America Japan2.048 Mb/s 1.544 Mb/s 1.544 Mb/s8.448 Mb/s 6.312 Mb/s 6.312 Mb/s

34.368 Mb/s 44.376 Mb/s 32.064 Mb/s139.264 Mb/s 97.728 Mb/s

G.702PDH

STM-256 39,813.120 Mb/s

STM-0 51.840 Mb/s

STM-64 9,953.280 Mb/s

STM-16 2,488.320 Mb/s

STM-4 622.080 Mb/s

STM-1 155.520 Mb/s

Page 10: 1[1][1][1].SDH Basics

10

Path and Section

MUX LT LT MUX

RegeneratorSection

Multiplex Section

Path

Regenerator RegeneratorSection Section

REG REG

VC Processing STM-N Processing

Page 11: 1[1][1][1].SDH Basics

11

Review Questions

Fill up the following sentences with correct words:   

A) When the SDH and PDH are compared, the ( 1 ) is an asynchronous system and the ( 2 ) is a synchronous system. The ( 3 ) conforms to the worldwide unique standard. On the other hand, there are three different ( 4 ) standards, for Europe and others, North America, and Japan.

B) The peculiarities of the SDH are that the entire network basically operates with one ( 1 ), it conforms to the ( 2 ) recommendation, and advanced ( 3 ) is easily enabled by using abundant ( 4 ).

C) The bit rate of STM-1 is ( 1 ) Mb/s, bit rate of STM-4 is ( 2 ) Mb/s, and bit rate of STM-16 is ( 3 ) Mb/s. They are ( 4 ) multiple of STM- ( 5 ).

D) The regenerator section is a section between ( 1 ) ( 2 ) or a section between a ( 3 ) and its neighbor ( 4 ).

E) The multiplex section is a section between nodes where ( 1 ) is generated and ( 2 ) .

F) The path is a connection between assembling and disassembling points of ( 1 ).

Page 12: 1[1][1][1].SDH Basics

12

Page 13: 1[1][1][1].SDH Basics

13

MULTIPLEXING STRUCTURE, FRAME STRUCTURE AND

POINTER

Multiplexing Structure Frame Structure Pointer Review Questions

SDH TRANSMISSION SYSTEM

Page 14: 1[1][1][1].SDH Basics

14

SDH Multiplexing Structure (1)

X1 AUG-64

Poi nter processi ng

Multiplexing

Aligning

Mapping

6312 kb/s

2048 kb/s

1544 kb/sC-11

C-12

C-2

34368 kb/s44736 kb/s

139264 kb/s

C-3

VC-3TU-3

TU-2

x 3

VC-2

VC-12TU-12

VC-11

x 4

TU-11

x 1

C-4

TUG-2

x 7x 7

TUG-3x 1

x 3AU-4 VC-4

VC-3AU-3

x 3

x 1

AUG-1

C-4-4c

VC-4-256cAU-4-256c

C-4-16c

C-4-64c

C-4-256c

AUG-4

X1AUG-256STM-256

STM-64

STM-16X1

STM-4X1

STM-1X1

STM-0X1

VC-4-16cAUG-16

x 4

x 4

x 4

x 4

x 1

x 1

x 1

x 1

VC-4-64cAU-4-64c

AU-4-16c

VC-4-4cAU-4-4c

Page 15: 1[1][1][1].SDH Basics

15

SDH Multiplexing Structure (2)

X1 AUG-64

Poi nter processi ng

Multiplexing

Aligning

Mapping

6312 kb/s

2048 kb/s

1544 kb/sC-11

C-12

C-2

34368 kb/s44736 kb/s

139264 kb/s

C-3

VC-3TU-3

TU-2

x 3

VC-2

VC-12TU-12

VC-11

x 4

TU-11

x 1

C-4

TUG-2

x 7x 7

TUG-3x 1

x 3AU-4 VC-4

VC-3AU-3

x 3

x 1

AUG-1

C-4-4c

VC-4-256cAU-4-256c

C-4-16c

C-4-64c

C-4-256c

AUG-4

X1AUG-256STM-256

STM-64

STM-16X1

STM-4X1

STM-1X1

STM-0X1

VC-4-16cAUG-16

x 4

x 4

x 4

x 4

x 1

x 1

x 1

x 1

VC-4-64cAU-4-64c

AU-4-16c

VC-4-4cAU-4-4c

Page 16: 1[1][1][1].SDH Basics

16

Multiplexing Process of SDHExample: 2 Mb/s to STM-4

TUG-3HO POH TUG-3TUG-3 123

C-12LO POH

S

AU-4 PTR

pointer offset valueTU-1 PTR

C-12

VC-12

TU-12

TUG-3

VC-4

AUG-1

2.048Mb/s

TU-1 PTR

TUG-2

TUG-2

PDH

SOH

AU-4 PTR

11VC-12

VC-12

1

VC-4 AU-4

AUG-4

AUG-4

STM-4

pointer offset value

2.048Mb/s

AUG-1AUG-1AUG-1AUG-1

TU-1 PTR 2TU-1 PTR 3 12VC-1213VC-121

TUG-2 7

1234

VC-4

Page 17: 1[1][1][1].SDH Basics

17

STM-1 Frame Structure

5

3

R-SOH: Regenerator Section OverheadM-SOH: Multiplex Section Overhead

1 2 3 5 6 7 84

( 1) ( 2) ( 9)

270 bytes

125 µs

8 bits = 1 byte

270 columns

9

rows

125 µs

( 1)

( 2)

( 9)

9 261

Payload Capacity

R-SOH

1 AU PTR

M-SOH

Page 18: 1[1][1][1].SDH Basics

18

Byte Interleaved Multiplex and Frame Structure STM-N STM-1 (AU-4) STM-N

N CBA N

NNNSTM-1

STM-1AU-4

AAASTM-1

BBB

CCCSTM-N

byte interleaved multiplexing

R SOH

M SOH

N

N

9 x N 261 x N

9 rows

125 µs

STM-1AU-4

AU-4

AU-4

CBA

AU PTRs

ABC NABC N

Page 19: 1[1][1][1].SDH Basics

19

Pointer Function

R SOH

STM-4

Example:2 Mb/s to STM-4 via AU-4

AU PTR

M SOH

VC-4(3)

VC-4(2)

VC-4(1)

VC-4 (4)

VC-12 (63)

63

2

1

2 M signal

()

VC4

POH

TU12 PTR

TU-3 PTR area

POHVC-12

POHVC-12

POHVC-12

Page 20: 1[1][1][1].SDH Basics

20

AU-4 Pointer and Pointer Offset Number

N N N N S S D DD DDI I II I

10 bits

H1 H2

H1 * * H2 * * H3H3H3

782 # #

521 # #

86 # #

435 # #

696 # #

87 # #

522 # #

# same number for 3 consecutive bytes

0 0 0

VC-4

Pointer Configuration

1 1 1

Page 21: 1[1][1][1].SDH Basics

21

TU-12 Pointer and Pointer Offset Numbering

105

0

35

70

139

34

69

104VC-12

TU-12

N N N N S S D DD DDI I II I

10 bits

V1 V2

V1

V2

V3

V4

35 bytes

125 µs

36 bytes

500 µs

V 1

V 2

V 3

V 4

Pointer Structure

J2

Z6

K4

V5

V5

500 µs

125 µs

20 *

*In this case, pointer offset value is set20(0000010100)

Page 22: 1[1][1][1].SDH Basics

22

Pointer Renewal

( )

B

( )

A

B

A

STM-1

STM-N

delay

input signal

frame aligned signal

multiplexed signal

A B

STM-1

STM-1

STM-1

delay

Page 23: 1[1][1][1].SDH Basics

23

AU-4 Justification (1)

N N N N S S I I II ID DD DD

H1 H2

pointer value

1

4

9

N ega tive justif ica tion opportun ity(3 bytes)

P ositive justifica tion opportun ity(3 byte )

Negative justification controlinvert five D-bits accept majority vote

Positive justification controlinvert five I-bits accept majority vote

I : Increment bitD : Decrement bitN : New data flag bit

0 0 0

Page 24: 1[1][1][1].SDH Basics

24

AU-4 Justification (2) - Positive Justification -

n+1n+1n n nn-1

H1 H2 H3 H3 H311Y Y

H1 H2 H3 H3 H311Y Y

start of VC-4

pointer value (n)

pointer value (I bits inverted)

positive justification start of VC-4 (new)

pointer value (n+1)

H1 H2 H3 H3 H311Y Y

H1 H2 H3 H3 H311Y Y

n+1n+1n n nn-1

n+1n+1n n nn-1

n+1n+1n n nn-1

Frame 1

Frame 2

Frame 3

Frame 4

125 µs

250 µs

375 µs

500 µs

Page 25: 1[1][1][1].SDH Basics

25

AU-4 Justification (3) - Negative Justification -

n-2 n-1

n+1n+1

H1 H2 H3 H3 H311Y Y

H1 H2 H3 H3 H311Y Y

start of VC-4

pointer value (n)

pointer value (D bits inverted)

negative justification start of VC-4 (new)

pointer value (n-1)

H1 H2 11Y Y

H1 H2 H3 H3 H311Y Y

n+1n+1n n nn-1

n+1n+1n n n

n+1n+1n n nn-1

Frame 1

Frame 2

Frame 3

Frame 4

125 µs

250 µs

375 µs

500 µs

n-1

n-2 n-1 n-1n-1

n-1n-1n-2

n n nn-1n-1n-1n-2

Page 26: 1[1][1][1].SDH Basics

26

Review QuestionsFill up the spaces enclosed in parentheses in the following sentences with correct words:  1. The cycle of the frame structure of STM-1 is ( a ) and composed of ( b ) bytes. (

c ) vertical matrixes and ( d ) horizontal matrixes represent the frame structure.2. An STM-4 signal has four times the rate of an STM-1 signal. The STM-4 signal has rate of (

a )Mbit/s (=( b ) x ( c )Mbit/s). There are 36 columns for section overhead plus ( d ) pointer. There are ( e ) columns or byte for an STM-4 signal.

3. Multiplexing process route via AU-( a ) is ( b ) standard and used in most countries. One AUG is equivalent one ( c ). A three of ( d ) signals is formed an AUG.

4. VC-3 or VC-4 POH starts immediately after ( a ) (if the pointer offset value is 0); but for VC12 POH, V5 is placed right after the ( b ) byte not after the ( c ).

5.. The five I bits in the (H1, H2) pointer word are inverted if the system request a ( a ) frequency justification while the five D bits used for ( b ) frequency justification. In either case, the majority vote rule is applicable to both the I and the D bits. Under a normal operation condition, the pointer value can be increased or decreased by ( c ). If the pointer value is 728, and a positive frequency justification is requested, the new pointer value will become ( d ) for the next three frames. If the pointer value is 0, and a negative frequency justification is requested, the new pointer value will become ( e ) for the next three frames.

6. The NDF of SDH pointer has a code of ( a ) for a normal operation; on the other hand, for re-starting (rebooting ) a new pointer while ignoring the existing one, NDF should be set to ( b ).

Page 27: 1[1][1][1].SDH Basics

27

Page 28: 1[1][1][1].SDH Basics

28

Page 29: 1[1][1][1].SDH Basics

29

OVERHEAD AND MAPPING

• Overhead• Mapping• Review Questions

SDH TRANSMISSION SYSTEM

Page 30: 1[1][1][1].SDH Basics

30

STM-1 Frame Structure and SOH

RSOH

MSOH

AU PTR

STM-1 PAYLOAD

261 bytes9 bytes

Section O verhead

9ro

ws

A U P o in te r(s )

R S O H

M S O H

}

}: bytes reserved for national use

A 1 A 1 A 1 A 2 A 2 A 2 J0B 1 E1 F 1D 1 D 2 D 3

B 2 B 2 B 2 K1 K 2D 4 D 5 D 6D 7 D 8 D 9

D 1 0S 1 Z 1 Z 1 Z 2 Z 2 M 1 E2

D 11 D 1 2

Page 31: 1[1][1][1].SDH Basics

31

Function of SOH (1)Framing (A1, A2)Regenerator section trace (J0) regenerator section connection check Data communication channel (D1-3) regenerator section DCC, 192 kb/s

(D4-12) multiplex section DCC, 576 kb/sOrder wire (E1) accessible at regenerators

(E2) accessible at multiplexersUser channel (F1) 64 kb/s clear channelError monitoring (B1) regenerator section BIP-8

(B2) multiplexer section BIP-24NAPS signaling (K1,2) automatic protection switching

(K2) also used as MS-AIS and MS-RDISynchronization status (S1) indication of quality levelSection status reporting (M1) REI (count of BIP-24N)

RDI ; Remote Defect Indication

(formerly FERF, Far End Receive Failure)

REI ; Remote Error Indication

(formerly FEBE, Far End Block Error)

MS ; Multiplex Section

DCC ; Data Communication Channel

A 1 A 1 A 1 A 2 A 2 A 2 J 0B 1 E1 F 1D 1 D 2 D 3

B 2 B 2 B 2 K1 K 2D 4 D 5 D 6D 7 D 8 D 9

D 1 0S 1 Z 1 Z 1 Z 2 Z 2 M 1 E2

D 11 D 1 2

A U P o in te r(s )

R S O H

M S O H

}

}: bytes reserved for national use

Page 32: 1[1][1][1].SDH Basics

32

Function of SOH (2)Framing (A1, A2)Regenerator section trace (J0) regenerator section connection check Data communication channel (D1-3) regenerator section DCC, 192 kb/s

(D4-12) multiplex section DCC, 576 kb/sOrder wire (E1) accessible at regenerators

(E2) accessible at multiplexersUser channel (F1) 64 kb/s clear channelError monitoring (B1) regenerator section BIP-8

(B2) multiplexer section BIP-24NAPS signaling (K1,2) automatic protection switching

(K2) also used as MS-RDISynchronization status (S1) indication of quality levelSection status reporting (M1) REI (count of BIP-24N)

RDI ; Remote Defect Indication

(formerly FERF, Far End Receive Failure)

REI ; Remote Error Indication

(formerly FEBE, Far End Block Error)

MS ; Multiplex Section

DCC ; Data Communication Channel

A1 A1 A1 A2 A2 A2 J0B1 E1 F1D1 D2 D3

B2 B2 B2 K1 K2D4 D5 D6D7 D8 D9D10S1 Z1 Z1 Z2 Z2 M1 E2

D11 D12

AU Pointer(s)

RSOH

MSOH

; bytes reserved for national use

}

}

Page 33: 1[1][1][1].SDH Basics

33

Section and Path Trace Method

RSTMSTHPTLPT RST LPTHPTMSTRST

J0: Section trace

VC-4 POH (J1: Path trace)

VC-3 POH(J1: Path trace)VC-12(J2: Path trace)

Node A

RST: Regenerator Section Termination MST: Multiplex Section TerminationHPT: High Order Path Termination LPT: Lower Order Path Termination

Node -A Node -BPath Trace : Used

Transmit path trace : 123-565656

Path Trace expected value

: ABCDEGF

Received value : ABCDEFG

Path Trace : Used

Transmit path trace : ABCDEFG

Path Trace expected value

: 123-565656

Received value : 123-565656

Node B

Page 34: 1[1][1][1].SDH Basics

34

Section Trace(J0)

RST

RST

Node A Node B

RST

RST

RST

RST

Node C

RST: Regenerator Section Termination

Terminated Section ofSection Trace

Terminated Section ofSection Trace

a

c

a’

c’

b

d

b’

d’

Page 35: 1[1][1][1].SDH Basics

35

Principle of BIP 8

1

n

K i =even - - - - - K=0odd - - - - - K=1

B1 byte

# nBlock

# n+1Block

1121 * * *K1 * * * 81 1222 * * * K2 * * *82

1i 2i * * * Ki * * *8i

1n 2n * * * Kn * * *8n

1 2* * * **K * * * *8

Page 36: 1[1][1][1].SDH Basics

36

BIP Computing   Area

AU PTR

B1

B2 B2 B2

countedafter scrambling

countedbefore scrambling

BIP 8 for Regenerator Section BIP N x 24 for Multiplex Section

B1 renewed at every regenerator

B2 renewed only at multiplexer

RSOH RSOH

MSOH

AU PTR

MSOH

#n

#n+1

Page 37: 1[1][1][1].SDH Basics

37

Higher-Order POH Functions (VC-3, VC-4)

Path error monitor (B3) BIP-8Path status report (G1) REI (Remote Error Indication)

count of error (BIP-8 results)RDI (Remote Defect Indication)

receiving path AIS, signal failurepath trace mismatch

Path trace (J1) verification of VC connectionuser programmable, 15 characters

Signal label (C2) indication of VC compositionunequipped, equipped-non-specific,TUG structure, locked TU, ATM,async. 34M or 45M, async. 140M,MAN (DQDB), FDDI

Path user channels (F2, F3) 64 kb/s clear channelsAPS signaling (K3) automatic protection switching at the

higher order path levelPosition indicator (H4) multiframe position for the VC-1, VC-2Network operator byte (N1) for tandem connection maintenance

REI; formerly FEBE (Far End Block Error), RDI; formerly FERF (Far End Receive Failure)

J1

B3

C2

G1

F2

H4

F3

K3

N1

VC-3 / VC-4payload

VC-3 / VC-4

Page 38: 1[1][1][1].SDH Basics

38

TU-12 multiframe indication byteVC-3/VC-4POH Portion

VC-3/VC-4 Payload

(V4)

In H4(X Y), X Y represent bits 7 and 8 of H4

H4(00)9 rows

PTR(V1)

PTR(V2)

PTR(V3)

(V4)

VC-3/VC-4 PayloadH4(01)

VC-3/VC-4 PayloadH4(10)

VC-3/VC-4 PayloadH4(11)

VC-3/VC-4 PayloadH4(00)

H4 bits1 2 3 4 5 6 7 8 Frame No TimeX X 1 1 X X 0 1 0 0X X 1 1 X X 1 0 1X X 1 1 X X 1 0 2X X 1 1 X X 1 1 3 500s TU-n multiframe

X: Bit reserved for future international standardization. Its contentshall be set to “1" in the interim.

Page 39: 1[1][1][1].SDH Basics

39

Path Trace (J1)

LPT

Node A Node B

Crossconnection

LPT

Node C

LPT: Lower Order Path Termination[It will change to HPT(High Order Path Termination) when VC-4 J1 is used]

Terminated Section of J1 (J2) Path Trace

a

c

b

d

Page 40: 1[1][1][1].SDH Basics

40

Tandem Connection

B3 monitor B3 monitor

Compare

Error in TC

Error detection (for all VCs in a bundle)

Data link (for the first VC in the bundle)

Error count

N1 byte in VC

VC

* The Tandem Connection is applicable to a single VC or bundled VCs.

B Network (Operator Administrative area)A Network C Network

RS RS RSMS MSMS

Path

RS: Regenerator SectionMS: Multiplex Section

VC

Tandem Connection

Page 41: 1[1][1][1].SDH Basics

41

Functions of POH (VC-1x, VC-2)

K4

N2

J2

V5

500µs

125µs

REI RFI RDI1 2 4 5 6 7 83

Signal LabelBIP-2

V5 byte

Path error monitor (V5) BIP-2Path status report (V5) REI (Remote Error Indication)

count of error (BIP-2 results)RFI (Remote Failure Indication)RDI (Remote Defect Indication)

receiving path AIS, signal failure

Signal label (V5) indication of VC compositionunequipped, equipped-non-specific,asynchronous, bit synchronous,byte synchronous, equipped-unused

Path access point identifier (J2) verification of VC connectionuser programmable, 15 characters

Network operator byte (N2) for tandem connection maintenanceAPS signaling (K4) automatic protection switching at the

lower order path level

REI ; former FEBE (Far End Block Error)RDI ; former FERF (Far End Receive Failure)RFI ; formerly this bit was assigned to Path Trace

VC

-1x

/V

C-2

Page 42: 1[1][1][1].SDH Basics

42

Table for SAPI & API

Total 94 characters plus space

0 x x x x x x x(o)

0 x x x x x x x(k)

1 C1C2C3C4C5C6C7

0 x x x x x x x(T)

J1

J1

J1

J1

0 x x x x x x x(2)

0 x x x x x x x(1)

0 x x x x x x x(#)

J1

J1

J1

16

mu

lti-f

ram

e

125s

2ms

example : VC-4 or VC-3 case

CRC of previous 16 multiframe for J1

maximum 15 characters (ex. Tokyo-Osaka #21)

(Space) 3 F Y l

! 4 G Z m

“ 5 H [ n

# 6 I \ o

$ 7 J ] p

& 8 K ^ q

% 9 L _ (Under Bar) r

‘ (Apostrophe) : (Colon) M ! s

( ; (Semicolon) N a t

) < O b u

* = P c v

+ > Q d w

, (Comma) ? R e x

- (Hyphen) @ S f y

. (Period) A T g z

/ B U h {

0 C V i |

1 D W j }

2 E X k ~

Page 43: 1[1][1][1].SDH Basics

43

End-to-End Maintenance Signal

AIS AIS

Low Order Path Section

High Order Path Section

Multiplex Section

RegeneratorSection

RegeneratorSection

LOVC HOVC LT REG LT HOVC LOVC

AIS AISAIS AIS

LOPLOPLOSLOF

LOSLOF

RDI (FERF)

RDI (FERF)

RDI (FERF)

REI (FEBE)

REI (FEBE)

REI (FEBE)

BIP-8BIP-8

BIP-24N

BIP-2

BIP-8

MUXTerminal Equipment generation detection

Page 44: 1[1][1][1].SDH Basics

44

Mapping 2M Signal into VC-12

R

32 bytes

32 bytes

32 bytes

V5

RJ2

RN2

RK4

R

1 0 O O O O R R

1 0 O O O O R R

1 0 R R R R R R

32 bytes

V5R

RJ2

RN2

RK4

R

31 bytes + 7 bits

32 bytes

C1C2O O O O R R

C1 C2 O O O O R R

C1 C2 R R R R R S1

S2 I I I I I I I

32 bytes

32 bytes

* The latest recommendation deletedbit synchronous mapping.

Asynchronous Byte Synchronous

140bytes

500 µs

35 bytes125 µs

Bit Synchronous

I ; informationO ; overheadC ; justification controlS ; justification opportunityR ; fixed stuff

R

TS1 to 15

TS16

TS17 to 31

R

V5

J2

RN2

RK4

R

R

TS1 to 15

TS16

TS17 to 31

R

TS1 to 15

TS 0

TS16

TS17 to 31

R

TS1 to 15

TS16TS17 to 31

TS0

TS0

TS0

TS0

Page 45: 1[1][1][1].SDH Basics

45

Mapping 34M Signal into VC-3

1

C = R R R R R R C1 C2 A B = R R R R R R R S1 S2 I I I I I I= R R R R R R R R

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x 8 I

3x 8 I

3x 8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x 8 I

3x 8 I

3x 8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

C

C

C

C

C

A B 8I

J1B3C2G1F2

H4Z3K3Z5

T1

T2

T3

125µs

3 rows

3 rows

3 rows

84 bytes

VC-3 POH

R : Fixed stu ffing bitC 1, C2 : Justi fication control bitS1, S 2 : Justi fication opportunity bitI : Information bit

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

3x8 I

Page 46: 1[1][1][1].SDH Basics

46

Mapping 140M Signal into VC-4

Y Y Y Z

Y Y Y Y96 I 96 I 96 I 96 I 96 I

I ; in fo rm a tionO ; ove rheadC ; just ifica tion con tro lS ; just ifica tion opportunityR ; f ixed stuff

96 I 96 I 96 I 96 I 96 I

96 I 96 I 96 I 96 I 96 I

96 I 96 I 96 I 96 I 96 I

W X Y Y Y

Y Y Y

POH

1 12 bytes1

W = I I I I I I I IX = C R R R R R OOY = R R R R R R R RZ = I I I I I I S R

X X

X

X

J1B3C2

G1

H4F3K3N1

F2

SOH

PTR

SOH

1 byte 13 bytes

POH 20 blocks of 3 bytes

VC-4

STM-1

Page 47: 1[1][1][1].SDH Basics

47

Mapping ATM Cell Into VC-4

J1

B3

C2

G1

F2

H4

F3

K3

N1

VC-4 POH

V C -4

A T M ce ll

header

53 bytes

Page 48: 1[1][1][1].SDH Basics

48

VC-12 (2 Mb/s) to VC-4 (STM-1)

36

36

36

36

9

1 2 3

PTR

PTR

4

1 2 3 1 2 3 1 2

9

12 = 4 x 3

1 2 7 1 2 7 1 2 7 1 2 77

(12)(4) ~ (11)(3)(2)(1)SS

86 = 12 x 7 + 2

9POH

S S

1 2 3 1 2 3 1 2 3 1 2 31

261 = 86 x 3 + 3

AU PTR

AU PTR

SOH

SOH

PTR

PTR

3

x 3

x 7

x 3V3

V2

V1

R

125 µs

9

9

9

270 = 261 + 9

VC 12

(NPI)

NPI

125 µs

125 µs

125 µs

125 µs

125 µs500 µs

STM-1

AU-4

VC-4

TUG-3

TUG-2

TU-12

125 µs

Page 49: 1[1][1][1].SDH Basics

49

Mapping of VC-12 into VC-4

Page 50: 1[1][1][1].SDH Basics

50

VC-3 (34 Mb/s) to VC-4 (STM-1)

Page 51: 1[1][1][1].SDH Basics

51

Scrambler

scrambled

1111111000000100 - - - -

1111111000000100 - - - -

not scrambled

Payl oadSOH

123.....

9

Payload

D Q

C S

D Q

C S

D Q

C S

D Q

C S

D Q

C S

D Q

C S

D Q

C Sclock

set = frame pulse

+

+

data

scrambleddata

+

1 1 1 1 1 1 10 1 1 1 1 1 10 0 1 1 1 1 10 0 0 1 1 1 10 0 0 0 1 1 10 0 0 0 0 1 10 0 0 0 0 0 11 0 0 0 0 0 00 1 0 0 0 0 00 0 1 0 0 0 00 0 0 1 0 0 00 0 0 0 1 0 00 0 0 0 0 1 01 0 0 0 0 0 11 1 0 0 0 0 00 1 1 0 0 0 0

. .

. .

. .

modulo 2 addition

A + B = C

1 + 1 = 0

1 + 0 = 1

0 + 1 = 1

0 + 0 = 0

scrambler output

Page 52: 1[1][1][1].SDH Basics

52

2M PDH Signal Extraction from STM-1

V1

V2

V3

V4

V5

36

36

36

36

144TS

V1

V2

V3

V4

V5

9Row

3435

V5

J2

N2

K4

9Rows

9 bytes 261 bytes

H1 H2 H3AU PTR

J1

C-12

2.048Mbit/sInformation

VC-12(4Multi-frames)

35

35

35

140TS

STM-1 Frame

TU-12(4Multi-frames)

(4x9Frame)

TU-12frame in a row

9Row

9Row

* * * ** *

H1 H2 H3* * * ** * J1

J1

J1

H1 H2 H3* * * ** *

H1 H2 H3* * * ** *

9Rows

9Rows

9Rows

P T R

NPI

1

3

4

1

2

3

4

VC-4

2 6 1= 8 6 x3 + 3

9Row

(N P I)POH

S S

1 2 3 1 2 3 1 2 3 1 2 3

86 = 1 2 x7 + 2

1 2 7 1 2 7 1 2 7 1 7 1 2 7S

4

12 = 4 x3

S (1 2 )(4 ) ~ (11 )(3 )(2 )(1 )

1 2 3 1 2 3 1 2 3 1 2 3

P T R

P T R

2

TU-12(4x9 frame)

VC-12

4 bytes

TU-12

TUG-2

TUG-3

P T R

Page 53: 1[1][1][1].SDH Basics

53

Contiguous & Virtual Concatenation

STM-16

STM-1

STM-1

STM-1

NE-A

STM-4

STM-4c VC-4-4c

NE-CNE-B NE-D

ContiguousConcatenation

VirtualConcatenation

STM-16

ContiguousConcatenation

AU-4#1

AU-4#2

AU-4#3

AU-4#4

AU-4-4c

AU-4#1

AU-4#2

AU-4#3

AU-4#4

AU-4#1

AU-4#2

AU-4#3

AU-4#4

AU-4-4c

Page 54: 1[1][1][1].SDH Basics

54

Virtual Concatenation

• For the transport of payloads that do not fit efficiently into the standard set of virtual containers (VC-3/4/12)

• VC concatenation can be used. VC concatenation is defined for:

VC-3/4- to provide transport for payloads requiring greater capacity than one Container-3/4;

VC-12- to provide transport for payloads that require capacity greater than one Container-12.

Page 55: 1[1][1][1].SDH Basics

55

Contiguous Concatenation of X VC-4s (VC-4-Xc, X=4, 16, 64, 256)

AU-4-4c PTRs

MSOH

RSOH

9X 261X

5

3

1

261X1J1B3C2

F3K3N1

G1F2H4

FixedStuff

C-4-Xc

X-1VC-4 POH

STM-N

AU-4-4 PTRs

MSOH

RSOH

9N 261N

5

3

1

1261N

VC-4 POH

STM-N

VC-4-Xc

Concatenated VC-4-XcVC-4-N

J1B3C2

F3K3N1

G1F2H4

J1B3C2

F3K3N1

G1F2H4

VC-4 POH

N

C-4-N

VC-4-N

Page 56: 1[1][1][1].SDH Basics

56

AU-4 Pointer and Concatenation Indication

N N N N S S I D I D I D I D I D

H1 Y 1* 1* H2 H3 H3 H3

1 0 0 1 U U 1 1 1 1 1 1 1 1 1 1

a) Nine AU-4 pointer bytes

b) Normal AU-4 pointer

c) Concatenation indication

H1 H2

(H1, H2) = AU-4 pointer, H3= pointer action byte , Y=(100UU11)U=Unspecified, 1*=(11111111)

N = New data flag bit, S= size bit, I= increment bit, D= decrementbit, U=Unspecified

Page 57: 1[1][1][1].SDH Basics

57

Virtual concatenation of X VC-3/4s(VC-3/4-Xv, X=1….256)

J1B3C2G1F2H4F3K3N1

1

9

851

VC-3#X125s

1

9

851

VC-3#1125s

J1B3C2G1F2H4F3K3N1

X1 X x 841

9

C-3-#X

125s

VC-3-Xc

J1B3C2G1F2H4F3K3N1

1

9

2611

VC-4#X125s

1

9

2611

VC-4#1125s

J1B3C2G1F2H4F3K3N1

X1 X x 2601

9

C-4-#X

125s

VC-4-Xc

a) VC-3-Xv Structure b) VC-4-Xv Structure

Page 58: 1[1][1][1].SDH Basics

58

Virtual Concatenation Multiframe Structure

a) Mulltiframe indicator MFI1 Configuration(from Frame 0 to 15)

b) Mulltiframe indicator MFI2( from Frame 0 to 255)

Bit No in H4 1

MFI X

2 3 4 5 6 7 8

No used

Bit No in H4 1

MFI2(LSB)

2 3 4 5 6 7 8

MFI2(MSB)

Frame 0 0 0 0 0 0 0 0 1Frame 1 0 0 0 0 0 0 1 0Frame 2 0 0 0 0 0 0 1 1

Frame 126 0 1 1 1 1 1 1 0Frame 127 0 1 1 1 1 1 1 1Frame 128 1 0 0 0 0 0 0 0Frame 129 1 0 0 0 0 0 0 0Frame 130 1 0 0 0 0 0 0 0

Frame 254 1 1 1 1 1 1 1 0Frame 255 1 1 1 1 1 1 1 1

SequencceindiccatorSQ LSB(bit 5-8)

SequencceindiccatorSQ MSB(bit 1-4)

Frame 0 0 0 0 0Frame 1 0 0 0 1Frame 2 0 0 1 0

Frame 14 1 1 1 0Frame 15 1 1 1 1

Page 59: 1[1][1][1].SDH Basics

59

VC-3/VC-4-Xv multiframe and sequence indicator

C-4/3-Xc C-4/3-Xc

PO

HP

OH

PO

HP

OH

PO

H

MFI1:0MF12_MSB:0

MFI1:1MF12_LSB:0

MFI1:15

MFI1:0MF12_MSB:0

MFI1:1MF12_LSB:1

PO

HP

OH

PO

HP

OH

PO

H

MFI1:1MF12_LSB:0

MFI1:15

MFI1:0MF12_MSB:0

MFI1:1MF12_LSB:1

MFI1:0MF12_MSB:0

SQ:0

SQ:X-1

Mu

ltifr

am

e(M

F)

1 X

Page 60: 1[1][1][1].SDH Basics

60

VC-12-Xv Structure

1

2

3

4

V5

J2

N2

K4

V5

J2

N2

K4

1

2

3

4

1 35

1 35

VC-12#1

VC-12#X500s

500s

1

2

3

4

1 X X34

500s

C-12#Xc

VC-12#Xv

Page 61: 1[1][1][1].SDH Basics

61

Capacity of virtually concatenated VC-12-Xv

If carried in X Capacity In steps of

VC-12-Xv VC-3 1 to 21 2176 kbit/s to 45 696 kbit/s 2176 kbit/s

VC-12-Xv VC-4 1 to 63 2176 kbit/s to 137 088 kbit/s 2176 kbit/s

VC-12-Xv Unspecified 1 to 64 2176 kbit/s to 139 264 kbit/s 2176 kbit/s

Page 62: 1[1][1][1].SDH Basics

62

VC12 Extended Signal label byte coding -in K4 bit 1-

MSB LSB MFAS: Multiframe Alignment Signal0: ZeroR: Reserved bit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

MFAS0 R R R R R R R R R R R R

Extended Signal Label0 1 1 1 1 1 1 1 1 1 0

MSBb12 b13 b14 b15

LSBb16 b17 b18 b19

Hexcode

0 0 0 0

0 0 0 0

0 0 0 0

0 1 1 1

0 0

07

0 0 0 0 1 0 0 0 0 8

0 0 0 0 1 0 0 1 0 9

0 0 0 0 1 0 1 0 0 A

0 0 0 0 1 0 1 1 0 B

0 0 0 0 1 1 0 0 0 C

Interpretation

Reserved

Mapping under development

ATM mapping

Mapping of HDLC/PPP framed signal

Mapping of HDLC/LAPS framed signals

Virtually concatenated test signal, O.181specific mapping

Flexible Topology Data Link mapping0 0 0 0 1 1 0 1 0 D

1 1 1 1 1 1 1 1 F F Reserved

Page 63: 1[1][1][1].SDH Basics

63

K4 bit 2 multiframe:K4 (b2)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Frame countR R R R R R R R R R R R R R R R R R R R R

Sequence indicator

R: Reserved bit

Page 64: 1[1][1][1].SDH Basics

64

Page 65: 1[1][1][1].SDH Basics

65

Page 66: 1[1][1][1].SDH Basics

66

Review QuestionsFill up the spaces enclosed in parentheses in the following sentences with correct words.  1. B1 is to monitor a ( a ) error and B2 is for monitor a ( b ) error. For STM-4, th

e monitoring method of B1 is ( c ) and the monitoring method of B2 is ( d ).2. K1 and K2 are called ( a ) signaling and used to exchange of transfer control informat

ion among nodes in an ( b ) Ring and a ( c ) – protection ( d ) system. 3. M1 is used to report a result of error detection by ( a ) , by number of ( b ) violatio

n. 4. G1 is used to report the receiving status of ( a ) back to the ( b ) side.5. H4 is used to display a ( a ) number in a multiframe required to process the TU point

er.6. ( a ) 2,048 kb/s signal is required in frequency justification between ( b ) and SDH

is necessary. ( c ) synchronous 2,048 kb/s signal is always ( d ) bit is used and ( e ) bit is not used. To indicate this status ( f ) and ( g ) are always set to 1 and 0 automatically. ( h ) synchronous 2,048 kb/s signal location of 64 kb/s channels of 2M in VC-12 is allocated

7. SDH pointers require 10 bits (5 Is and 5 Ds) of pointer value because of the maximum possible pointer offset value of AU-4 pointer is ( a )