11-regulacion transcripcion eucariotes i 2011-2

Upload: diego-ugarte-la-torre

Post on 07-Apr-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    1/37

    REGULACIN EXPRESIN EN

    EUCARIOTES

    Jorge Arevalo

    2011

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    2/37

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    3/37

    Regulation of Gene

    Activity in

    Eucaryotes

    1. Transcription2. RNA processing3.

    mRNA transport4. mRNA degradationand storage

    5. Translation6. Posttranslational

    modulation of

    protein activity

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    4/37

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    5/37

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    6/37

    Nuclear factorslike NF-B orNFAT are involvedin the activation ofmany differentgenes.

    Gene transcriptionis a complicatedprocess whoseregulationinvolves a lot offactors

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    7/37

    El ejemplo muy estudiado: GAL en

    levadura

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    8/37

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    9/37

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    10/37

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    11/37

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    12/37

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    13/37

    Regulacin Hormonal

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    14/37

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    15/37

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    16/37

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    17/37

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    18/37

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    19/37

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    20/37

    La heterocromatina en la

    regulacion genica

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    21/37

    Chromatin Remember, DNA in

    eukaryotes packs intoCHROMATIN.

    HISTONES form theNUCLEOSOME, whichDNA loops around.

    EUCHROMATIN - lesscompact; activelytranscribed

    HETEROCHROMATIN -more compact;transcriptionallyinactive. Heterochromatin can be

    either constitutive orfacultative.

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    22/37

    How do Eukaryotic TranscriptionalRegulators Work?

    At least one way is by altering the packing of DNA intochromatin.

    The role of chromatin structure in the regulation oftranscription is an area of very active investigation.

    However, two important factors that play clear roles intranscriptional regulation are known: DNA METHYLATION - A subset of cytosine (C) residues are

    modified by methylation.

    HISTONE ACETYLATION - Histones can be modified byacetylation.

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    23/37

    DNA Methylation Genes that are transcriptionally inactive are often

    METHYLATED.

    In eukaryotes, cytosine residues are modified by methylation.

    Typically, the sites of methylation are CG dinucleotides(vertebrates). This allows maintenance through replication.!

    CYTOSINE

    METHYL-C

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    24/37

    Histone Acetylation

    HISTONES in transcriptionally active genes are oftenACETYLATED.

    Acetylation is the modification of lysine residues inhistones. Reduces positive charge, weakens the interaction with DNA.

    Makes DNA more accessible to RNA polymerase II

    Enzymes that ACETYLATE HISTONES are recruited toactively transcribed genes.

    Enzymes that remove acetyl groups from histones arerecruited to methylated DNA.

    There are additional types of histone modification as well,such as methylation of the histones.

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    25/37

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    26/37

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    27/37

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    28/37

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    29/37

    Efectos localizados de modificacin

    de la cromatina

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    30/37

    Fig. 4. Model for formation of silenced chromatindomains. After therecruitment to a specific heterochromatin nucleation siteby proteins

    that directly bind DNA or are targeted by way of RNAs,histonemodifying

    enzymes (E) such as deacetylases andmethyltransferases

    modify histone tails to create a binding site for silencingfactors (SF).

    After this nucleation step, self-association of silencingfactors (such as

    Swi6/HP1 or Sir3) is hypothesized to provide an interfacefor their

    interaction with histone-modifying enzymes, which then

    modify adjacenthistones, creating another binding site for silencingfactors. Sequentialrounds of modification and binding result in the stepwisespreadingof silencing complexes along nucleosomal DNA forseveral kilobases(spreading). Spreading of silencing complexes is blockedby the presenceof boundary elements (BE). The modifications associatedwith the amino

    terminus of histone H3 in fission yeast heterochromatin(bottom left)

    and euchromatin (bottom right) are illustrated as anexample. Deacetylation

    and methylation of H3 Lys9are followed by deacetylationof H3

    Lys14 and create a binding site for the Swi6 silencingfactor.

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    31/37

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    32/37

    REGULACION EPIGENETICA

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    33/37

    Genetic Imprinting

    Remember that DNA methylation can be maintainedthrough replication.

    This allows the packing of chromatin to be passed on -just like a gene sequence. However, differences in chromatin packing are not as stable as

    gene sequences.

    Heritable but potentially reversible changes in geneexpression are called EPIGENETIC phenomena

    Vertebrates use these differences in chromatin packing toIMPRINT certain patterns of gene regulation.

    Some genes show MATERNAL IMPRINTING while other showPATERNAL IMPRINTING.

    The alleles of some genes that are inherited from therelevant parent are methylated, and therefore are notexpressed.

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    34/37

    Prader-Willi &Angelman Syndromes

    Both of these genetic disorders are caused bydeletion of a region of chromosome 15.

    However, the syndromes differ: Prader-Willi Syndrome - obesity, mental retardation,short stature. (abbreviated PWS) Angelman Syndrome - uncontrollable laughter, jerky

    movements, and other motor and mental symptoms.(abbreviated AS)

    Syndrome that develops depends upon theparent that provided the mutant chromosome.

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    35/37

    PWS

    AS

    PWS

    Mousemodel

    ASMousemodel

    From Annu Rev Genomics & Hum Genet

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    36/37

    Prader-Willi & Angelman Syndromes

    Prader-Willi Syndrome - develops when theabnormal copy of chromosome 15 is inheritedfrom the father.

    Angelman Syndrome - develops when theabnormal copy of chromosome 15 is inheritedfrom the mother.

    The differences reflect the fact that some lociare IMPRINTED - so only the allele inherited

    from one parent is expressed. The region contains both maternally and paternally

    imprinted genes.

  • 8/4/2019 11-Regulacion Transcripcion Eucariotes I 2011-2

    37/37

    Methylation and Gene Regulation

    For imprinted genes, the pattern of generegulation is dependent upon the parentthat donated the chromosome.The methylation pattern is reprogrammed

    in the germ line. There are other examples of methylation

    changes the regulate gene expression.In mammals, one of the two X chromosomes

    in females is inactivated.The inactivated X is methylated.