11. active filters and tuned circuits · 11. active filters and tuned circuits tlt-8016 basic...

22
11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 11. Active Filters and Tuned Circuits

Upload: hathuy

Post on 23-Jun-2018

240 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: 11. Active Filters and Tuned Circuits · 11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 3 Sallen - Key Circuits Figure 11.2 Equal-component Sallen-Key

11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 1

11. Active Filters and Tuned Circuits

Page 2: 11. Active Filters and Tuned Circuits · 11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 3 Sallen - Key Circuits Figure 11.2 Equal-component Sallen-Key

11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 2

11.1 Active Low - Pass FiltersButterworth Transfer Function

( )( ) n

bff

HfH2

0

/1+= (11.1)Active filters: circuits, containing resistors,

capacitors and Op Amps. They are intended for separating of signals having different frequencies.

Requirements for filters:1. Contain few components.2. Have a transfer function that is insensitive to component tolerances.3. Place modest demands on the op amp’s gain-bandwidth product, output impedance, slew rate, and other specifications.4. Be easily adjusted. 5. Require a small spread of component values.6. Allow a wide of useful transfer functions to be realized.

fb – break (cut-off) frequency.

Figure 11.1 Transfer function magnitude versus frequency for low-pass Butterworth filters.

Page 3: 11. Active Filters and Tuned Circuits · 11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 3 Sallen - Key Circuits Figure 11.2 Equal-component Sallen-Key

11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 3

Sallen - Key Circuits

Figure 11.2 Equal-component Sallen-Key low-pass active-filter section.

RCfb π2

1= (11.2)

Page 4: 11. Active Filters and Tuned Circuits · 11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 3 Sallen - Key Circuits Figure 11.2 Equal-component Sallen-Key

11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 4

Solution:We choose C1=C2=C11=C12=0.1µF and from (11.2)

Example 11.1 Fourth - Order Low - Pass Butterworth Filter DesignDesign a fourth - order low - pass Butterworth filter with a cut - off frequency of 100 Hz. Use the LF411 op amp.

kΩ8.15101.01002

12

16121121 =

×××===== −ππ Cf

RRRRb

From table 11.1 K=1.152; K1=2.235. We choose R4=R14=10kΩ and

( ) ( )( ) ( ) kΩ35.1210101235.21

kΩ52.110101152.113

1413

343

=××−=−=

=××−=−=

RKR

RKR

Figure 11.3 Fourth-order Butterworth low-pass filter.

Page 5: 11. Active Filters and Tuned Circuits · 11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 3 Sallen - Key Circuits Figure 11.2 Equal-component Sallen-Key

11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 5

11.2 Active High - Pass Filters

Transformation of low-pass transfer function to high-pass transfer function: f → fb

2/f.

( )( ) n

b

hpf/f

HfH2

0

1+= (11.3)

Figure 11.8 Sallen-Key high-pass active-filter section.

Figure 11.7 Normalized high-pass Butterworth transfer functions. Figure 11.9 Bode magnitude plot for the high-pass filter.

Page 6: 11. Active Filters and Tuned Circuits · 11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 3 Sallen - Key Circuits Figure 11.2 Equal-component Sallen-Key

11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 6

11.3 Active Bandpass Filters

Delyiannis - Friend Bandpass Circuits

( ) 3210 2

1RR||RC

= (11.6)

1

30 2R

RH = (11.7)

CRB

3

= (11.8)

21

21

30

21

/

R||RR

BfQ

== (11.9)

CfQR

03 π= (11.10)

0

31 2H

RR =

02

32 24 HQ

RR−

=

(11.11)

(11.12)Figure 11.12 Second-order bandpass filter.

Page 7: 11. Active Filters and Tuned Circuits · 11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 3 Sallen - Key Circuits Figure 11.2 Equal-component Sallen-Key

11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 7

R1 must be large to have high input impedance.

From (11.14) R3 = 20R1 and R1 must have moderate value to keep the value of R3 realistic.

The choice R1 = 10kΩ gives

Example 11.3 Bandpass Filter DesignDesign a bandpass filter with f0=1 kHz, B=200 Hz, and H0=10.

Solution: kΩ20010102020 313 =××== RR

kΩ5.280

1020080

33

2 =×

==RR( ) 5200101 3

0 =×== BfQ

nF96.71020010592.110592.1

3

3

3

3

=××

=−−

RC

C.

CfQR

3

03

105921 −×==

π(11.13)

We select C = 8.2nF and then calculate again the values of R1, R2 and R3.

2023

0

31

RHRR == (11.14)

80243

02

32

RHQ

RR =−

= (11.15)

Figure 11.13 Bandpass filter designed in Example 11.3.

Page 8: 11. Active Filters and Tuned Circuits · 11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 3 Sallen - Key Circuits Figure 11.2 Equal-component Sallen-Key

11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 8

11.4 The Series Resonant CircuitResonant Frequency and Quality Factor

LC1

0 =ω

Resonant frequency

(11.20)

LCf

π21

0 = (11.21)Figure 11.17 Series resonant circuit.

( ) RCj/LjVI i

++=

ωω 1Quality factor(11.16)

RLQ 0ω

= (11.22)(11.17)RIVo =

At the resonance

C/RjLRVjV i

o 12 ++−=

ωωω

CL

00

ω =(11.18) (11.23)

( )C/RjL

RjVVjA

i

ov 12 ++−

==ωωωω Another formula for the quality factor(11.19)

CRQ

0

= (11.24)

Page 9: 11. Active Filters and Tuned Circuits · 11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 3 Sallen - Key Circuits Figure 11.2 Equal-component Sallen-Key

11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 9

|Av| = 0 if ω = 0; |Av| → 0 when ω→ ∞. For frequencies between 0 and ∞ |Av| > 0 and has a maximum at ω = ω0.

The circuit is a bandpass filter.

Voltage transfer ratio, expressed with Q-factor and resonant frequency

( ) ( )( )[ ] ( )0

20

0

1 ωωωωωωω

/j/Q/jjAv +−

= (11.25)

Figure 11.18 Voltage transfer function for the series resonant circuit.

Page 10: 11. Active Filters and Tuned Circuits · 11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 3 Sallen - Key Circuits Figure 11.2 Equal-component Sallen-Key

11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 10

Circuit Bandwidth

QfffB LH

0=−=2

0fff LH =

(11.28)

(11.29)

If B is relatively small, compared with f0, then

(11.30)20 /BffL −≅

(11.31)20 /BffH +≅

Figure 11.20 Bandwidth and half-power frequencies for the series resonant circuit.

Figure 11.19 Normalized impedance of the series resonant circuit.

Page 11: 11. Active Filters and Tuned Circuits · 11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 3 Sallen - Key Circuits Figure 11.2 Equal-component Sallen-Key

11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 11

Exercise 11.7 Find resonant frequency, Q, the bandwidth, and half - power frequencies of a series resonance circuit having L=5 µH, C=100 pF, and R=10 Ω.

Solution:

MHz28.72

103181012.72

MHz96.62

103181012.72

kHz3184.221012.7

4.2210

1051012.722

MHz12.7101001052

12

1

36

0

36

0

60

660

1260

+×=+≈

−×=−≈

==

=××××

==

=×××

==

−−

Bff

Bff

QfB

RLfQ

LCf

H

L

ππππ

Page 12: 11. Active Filters and Tuned Circuits · 11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 3 Sallen - Key Circuits Figure 11.2 Equal-component Sallen-Key

11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 12

11.5 The Parallel Resonant Circuit

CL

00

ω =

(11.35)RCQ 0ω=

( ) ( )( )[ ] ( )0

20

0

//1/

ωωωωωωω

jQjRjZ

+−= (11.36)Figure 11.25 Parallel resonant circuit.

( ) ( ) CjLj/R/jZ

ωωω

++=

111

(11.32)

QfffB LH

0=−=

20fff LH =

LCf

π21

0 = (11.33)

20 /BffL −≅

LRQ0ω

= (11.34) 20 /BffH +≅

Page 13: 11. Active Filters and Tuned Circuits · 11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 3 Sallen - Key Circuits Figure 11.2 Equal-component Sallen-Key

11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 13

Figure 11.26 Normalized impedance of the parallel resonant circuit.

Page 14: 11. Active Filters and Tuned Circuits · 11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 3 Sallen - Key Circuits Figure 11.2 Equal-component Sallen-Key

11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 14

11.8 Tuned Amplifiers

Tuned amplifiers have resonant circuits at their inputs or outputs or both and they amplify in a narrow bandwidth.

Figure 11.43 Tuned amplifier.

( )ωjZVgV gsmo −= (11.57)

( )ωjZgVVA m

in

ov −== (11.58)

Page 15: 11. Active Filters and Tuned Circuits · 11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 3 Sallen - Key Circuits Figure 11.2 Equal-component Sallen-Key

11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 15

NeutralizationInput Impedance

Figure 11.48 Cneut is used to cancel the feedback through Cgd.Figure 11.47 Parallel input resistance and reactance for the tuned amplifier of Figure 11.44. Pay attention to the negative

real part at frequencies below the resonant frequency.

Page 16: 11. Active Filters and Tuned Circuits · 11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 3 Sallen - Key Circuits Figure 11.2 Equal-component Sallen-Key

11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 16

11.9 LC Oscillators

The Hartley Oscillators

Figure 11.50 Hartley oscillator.

Page 17: 11. Active Filters and Tuned Circuits · 11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 3 Sallen - Key Circuits Figure 11.2 Equal-component Sallen-Key

11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 17

Frequency of Oscillation and the Minimum Transconductance Requirement

0121

1

=−

− CVjV

LjCj ωω

ω (11.62)

( ) 0112

21 =

+−+− V

RLjCjVCjgm ω

ωω (11.63)

(11.62) and (11.63) form a homogeneous set of linear equations concerning V1 and V2. The solution is nonzero if the system determinant is zero:

( )

( )0

11

1

2

1 =

+−−

RLjCjCjg

CjL

jCj

m ωωω

ωω

ω(11.64)Figure 11.50 Hartley oscillator.

( ) 0211

1 =−+ VVCjLj

V ωω

(11.60)

011

1212

21

=

+−+

−+ mCg

RLRCj

LLLC

LC ω

ωω

ω

(11.66)( ) 02

2

2121 =++−+

RV

LjVVVCjVgm ω

ω (11.61)

Page 18: 11. Active Filters and Tuned Circuits · 11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 3 Sallen - Key Circuits Figure 11.2 Equal-component Sallen-Key

11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 18

011

1212

21

=

+−+

−+ mCg

RLRCj

LLLC

LC ω

ωω

ω

(11.66)

From zeroing of the real part of (11.66):

( )21

1LLC +

=ω (11.68)

From zeroing of the imaginary part of (11.66):

1

2

RLLgm = (11.71)

Page 19: 11. Active Filters and Tuned Circuits · 11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 3 Sallen - Key Circuits Figure 11.2 Equal-component Sallen-Key

11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 19

11.10 Crystal - Controlled OscillatorsThe Piezoelectric Effect

Piezoelectric effect: if we apply an electric field to the plates, forces on the ions in the lattice deform the material.

Piezoelectric effect is reciprocal: if deform the crystal, a voltage appears between the plates.

When used as frequency-determining element, quartz crystal vibrates freely at the desired frequency. The mechanical vibrations result in an ac current in the external circuit.

Figure 11.54 Crystal.

Page 20: 11. Active Filters and Tuned Circuits · 11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 3 Sallen - Key Circuits Figure 11.2 Equal-component Sallen-Key

11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 20

The Equivalent Circuit of the Crystal

Table 11.2 Parameters of a typical 10-MHz Crystal.

Figure 11.56 Equivalent circuit for a crystal.

Page 21: 11. Active Filters and Tuned Circuits · 11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 3 Sallen - Key Circuits Figure 11.2 Equal-component Sallen-Key

11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 21

Figure 11.57 Crystal reactance versus frequency.

Page 22: 11. Active Filters and Tuned Circuits · 11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 3 Sallen - Key Circuits Figure 11.2 Equal-component Sallen-Key

11. Active Filters and Tuned Circuits TLT-8016 Basic Analog Circuits 2005/2006 22

Crystal Oscillator Circuits

Figure 11.58 Pierce oscillator results from the Colpittsoscillator (Figure 11.53) if the inductor is replaced by a crystal. The dc blocking capacitor C3 shown in Figure 11.53 can be omitted because the crystal is an open circuit for dc.

Figure 11.53a Colpitts oscillator.