(1) the residue (2) evaluating integrals using the residue (3) formula for the residue

34
1 (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue (4) The Residue Theorem Section 8 SECTION 8 Residue Theory

Upload: kamea

Post on 07-Jan-2016

63 views

Category:

Documents


1 download

DESCRIPTION

Section 8. SECTION 8 Residue Theory. (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue (4) The Residue Theorem. What is a Residue?. Section 8. The residue of a function is the coefficient of the term - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue

1

(1) The Residue

(2) Evaluating Integrals using the Residue

(3) Formula for the Residue

(4) The Residue Theorem

Section 8

SECTION 8Residue Theory

Page 2: (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue

2

Section 8What is a Residue?

The residue of a function is the coefficient of the term

in the Laurent series expansion (the coefficient b1).0

1

zz

2

21

21 842

1

1zz

z01 b

842

111

23

32 2

22

zz

zzzz

z 11 b

40

43

0

32

0

2

0

1

303

202010

)()()(

)()()()(

zz

b

zz

b

zz

b

zz

b

zzazzazzaazf

Examples:

Page 3: (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue

3

Section 8What is a Residue?

The residue of a function is the coefficient of the term

in the Laurent series expansion (the coefficient b1).0

1

zz

2

21

21 842

1

1zz

z01 b

842

111

23

32 2

22

zz

zzzz

z 11 b

40

43

0

32

0

2

0

1

303

202010

)()()(

)()()()(

zz

b

zz

b

zz

b

zz

b

zzazzazzaazf

Examples:

Page 4: (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue

4

Section 8What’s so great about the Residue?

The formula for the coefficients of the Laurent series saysthat (for f (z) analytic inside the annulus)

40

43

0

32

0

2

0

1

303

202010

)()()(

)()()()(

zz

b

zz

b

zz

b

zz

b

zzazzazzaazf

C

nn

Cnn dzzzzf

jbdz

zz

zf

ja 1

010

))((2

1,

)(

)(

2

1

So

12)( jbdzzfC

C0z

We can use it to evaluate integrals

Page 5: (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue

5

Section 8What’s so great about the Residue?

The formula for the coefficients of the Laurent series saysthat (for f (z) analytic inside the annulus)

40

43

0

32

0

2

0

1

303

202010

)()()(

)()()()(

zz

b

zz

b

zz

b

zz

b

zzazzazzaazf

C

nn

Cnn dzzzzf

jbdz

zz

zf

ja 1

010

))((2

1,

)(

)(

2

1

So

12)( jbdzzfC

C0z

We can use it to evaluate integrals

Page 6: (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue

6

Section 8Example (1)

jjbdzzC

221

11

Integrate the function counterclockwise about z 2z1

1

2z

zzzz

zzzz

z 1111

11

1

1

32

32

By Cauchy’s Integral Formula:

jfjdzz

zfjdzzz

zf

CC

2)1(21

1)(2

)(0

0

singularpointcentre

Page 7: (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue

7

Section 8

2z

zzzz

zzzz

z 1111

11

1

1

32

32

singularpointcentre

Page 8: (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue

8

Section 8Example (1)

jjbdzzC

221

11

Integrate the function counterclockwise about z 2z1

1

2z

zzzz

zzzz

z 1111

11

1

1

32

32

By Cauchy’s Integral Formula:

jfjdzz

zfjdzzz

zf

CC

2)1(21

1)(2

)(0

0

singularpointcentre

Page 9: (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue

9

Section 8Example (1) cont.

jjbdzzC

221

11

We could just as well let the centre be at z1

2z

10

,1

1

1

1)(

zzz

zf

centre /singular

point

- a one-term Laurent series

- as before

Page 10: (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue

10

Section 8Example (2)

jjbdzzz

z

C

2223

3212

Integrate the function counterclockwise about z 3/2

By Cauchy’s Integral Formula:

jfjdzz

dzz

zfjdzzz

zf

CCC

2)1(21

1

2

1)(2

)(0

0

23

322

zz

z

2/3z

zzzzz

zzz

zz

zzz

zz

z

29532

21842

111

18

9

4

5

2

3

23

32

432

2

2

2

2

0

Page 11: (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue

11

Section 8Example (2)

jjbdzzz

z

C

2223

3212

Integrate the function counterclockwise about z 3/2

By Cauchy’s Integral Formula:

jfjdzz

dzz

zfjdzzz

zf

CCC

2)1(21

1

2

1)(2

)(0

0

23

322

zz

z

2/3z

zzzzz

zzz

zz

zzz

zz

z

29532

21842

111

18

9

4

5

2

3

23

32

432

2

2

2

2

0

Page 12: (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue

12

Section 8

So the Residue allows us to evaluate integrals of analyticfunctions f (z) over closed curves C when f (z) has one singularpoint inside C.

12)( jbdzzfC

C0z

b1 is the residue of f (z) at z0

Page 13: (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue

13

Section 8

That’s great - but every time we want to evaluate an integraldo we have to work out the whole series ?

No - in the case of poles - there’s a quick and easy wayto find the residue

We’ll do 3 things:

1. Formula for finding the residue for a simple pole

2. Formula for finding the residue for a pole of order 2

3. Formula for finding the residue for a pole of any order

1

sin4

z

z

7)3(

2

jz

e z

e.g.

e.g.

2)1(

33

z

ze.g.

Page 14: (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue

14

Section 8Formula for finding the residue for a simple pole

If f (z) has a simple pole at z0, then the Laurent series is

Rzzzz

bzzaazf

0

0

1010 0)()(

12

01000 )()()()( bzzazzazfzz

10 )()(lim0

bzfzzzz

)()(lim)(Res 000

zfzzzfzzzz

we’re putting the centre atthe singular point here

Page 15: (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue

15

Section 8Formula for finding the residue for a simple pole

If f (z) has a simple pole at z0, then the Laurent series is

Rzzzz

bzzaazf

0

0

1010 0)()(

12

01000 )()()()( bzzazzazfzz

10 )()(lim0

bzfzzzz

)()(lim)(Res 000

zfzzzfzzzz

we’re putting the centre atthe singular point here

Page 16: (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue

16

Section 8Formula for finding the residue for a simple pole

If f (z) has a simple pole at z0, then the Laurent series is

Rzzzz

bzzaazf

0

0

1010 0)()(

12

01000 )()()()( bzzazzazfzz

10 )()(lim0

bzfzzzz

)()(lim)(Res 000

zfzzzfzzzz

we’re putting the centre atthe singular point here

Page 17: (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue

17

Section 8Example (1)

Find the residue of at zj

4)(

)2(lim

)1)((

)2)((lim

)()(lim)(Res

22

000

j

jz

jz

zjz

jzjz

zfzzzf

iziz

zzzz

)1)((

2)(

2

zjz

jzzf

Check: the Laurent series is

2

3

3

2

2

222

222

)(2

1)(

16

5

4

11

4

)2(

)(4

)2(

)(3

2

)(21

)2)((

)(2

)2/()(1

1

)2)((

)(2

)(2

1)(2

)(

1)(2

)1)((

2)(

jzjzjz

i

j

jz

j

jz

j

jz

jjz

jjz

jjzjjz

jjz

jzjjz

jjz

jzjz

jjz

zjz

jzzf

20 jz

Page 18: (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue

18

Section 8Example (2)

Find the residue at the poles of

2

1

2

1lim

)2(

1lim)(Res

000

z

z

zz

zzzf

zzz

zz

zzf

2

1)(

2

Check: the Laurent series are

16

3

8

3

4

3

2

1

221

2

1

2/1

1

2

1

)2(

1)(

2

2

2 zz

z

zz

z

z

zz

z

zz

zzf

20 z

2

31lim

)2(

1)2(lim)(Res

222

z

z

zz

zzzf

zzz

8

)2(

4

)2(

2

1

)2(2

3

2

)2(

2

21

)2(2

3)2(

2/)2(1

1

)2(2

3)2(

)2(2

1

)2(

3)2(

)2(

1)(

2

2

2 zz

z

zz

z

z

zz

z

zz

z

zz

zzf

220 z

Page 19: (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue

19

Section 8Example (2)

Find the residue at the poles of

2

1

2

1lim

)2(

1lim)(Res

000

z

z

zz

zzzf

zzz

zz

zzf

2

1)(

2

Check: the Laurent series are

16

3

8

3

4

3

2

1

221

2

1

2/1

1

2

1

)2(

1)(

2

2

2 zz

z

zz

z

z

zz

z

zz

zzf

20 z

2

31lim

)2(

1)2(lim)(Res

222

z

z

zz

zzzf

zzz

8

)2(

4

)2(

2

1

)2(2

3

2

)2(

2

21

)2(2

3)2(

2/)2(1

1

)2(2

3)2(

)2(2

1

)2(

3)2(

)2(

1)(

2

2

2 zz

z

zz

z

z

zz

z

zz

z

zz

zzf

220 z

Page 20: (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue

20

Section 8Example (2)

Find the residue at the poles of

2

1

2

1lim

)2(

1lim)(Res

000

z

z

zz

zzzf

zzz

zz

zzf

2

1)(

2

Check: the Laurent series are

16

3

8

3

4

3

2

1

221

2

1

2/1

1

2

1

)2(

1)(

2

2

2 zz

z

zz

z

z

zz

z

zz

zzf

20 z

2

31lim

)2(

1)2(lim)(Res

222

z

z

zz

zzzf

zzz

8

)2(

4

)2(

2

1

)2(2

3

2

)2(

2

21

)2(2

3)2(

2/)2(1

1

)2(2

3)2(

)2(2

1

)2(

3)2(

)2(

1)(

2

2

2 zz

z

zz

z

z

zz

z

zz

z

zz

zzf

220 z

Page 21: (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue

21

Section 8Example (2)

Find the residue at the poles of

2

1

2

1lim

)2(

1lim)(Res

000

z

z

zz

zzzf

zzz

zz

zzf

2

1)(

2

Check: the Laurent series are

16

3

8

3

4

3

2

1

221

2

1

2/1

1

2

1

)2(

1)(

2

2

2 zz

z

zz

z

z

zz

z

zz

zzf

20 z

2

31lim

)2(

1)2(lim)(Res

222

z

z

zz

zzzf

zzz

8

)2(

4

)2(

2

1

)2(2

3

2

)2(

2

21

)2(2

3)2(

2/)2(1

1

)2(2

3)2(

)2(2

1

)2(

3)2(

)2(

1)(

2

2

2 zz

z

zz

z

z

zz

z

zz

z

zz

zzf

220 z

Page 22: (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue

22

Section 8Example (2)

Find the residue at the poles of

2

1

2

1lim

)2(

1lim)(Res

000

z

z

zz

zzzf

zzz

zz

zzf

2

1)(

2

Check: the Laurent series are

16

3

8

3

4

3

2

1

221

2

1

2/1

1

2

1

)2(

1)(

2

2

2 zz

z

zz

z

z

zz

z

zz

zzf

20 z

2

31lim

)2(

1)2(lim)(Res

222

z

z

zz

zzzf

zzz

8

)2(

4

)2(

2

1

)2(2

3

2

)2(

2

21

)2(2

3)2(

2/)2(1

1

)2(2

3)2(

)2(2

1

)2(

3)2(

)2(

1)(

2

2

2 zz

z

zz

z

z

zz

z

zz

z

zz

zzf

220 z

Page 23: (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue

23

Section 8

Find the residue at the pole z01 of )1(

3)(

2

zz

zzf

Question:

Page 24: (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue

24

Section 8Formula for finding the residue for a pole of order 2

If f (z) has a pole of order 2 at z0, then the Laurent series is

20

2

0

1010 )()()(

zz

b

zz

bzzaazf

)()(lim)(Res 20

00

zfzzdz

dzf

zzzz

2013

012

002

0 )()()()()( bzzbzzazzazfzz

now differentiate:

12

01002

0 )(3)(2)()( bzzazzazfzzdz

d

12

0 )()(lim0

bzfzzdz

dzz

Page 25: (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue

25

Section 8Example

Find the residue of at z1

9

2

)2(

2lim

2lim

)()(lim)(Res

211

20

00

zz

z

dz

d

zfzzdz

dzf

zz

zzzz

2)1)(2()(

zz

zzf

Check: the Laurent series is

81

)1(2

27

2

)1(9

2

)1(3

1

3

)1(

3

1

)1(3

1

)1(

1

3

1)1(

3

)1(

3

11

)1(3

1)1(

)3/)1((1

1

)1(3

1)1(

)1(3

1

)1(

1)1(

)1)(2()(

2

3222

2

2

222

z

zz

z

zz

zzz

z

z

zz

z

zz

z

zz

zzf

310 z

Page 26: (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue

26

Section 8Formula for finding the residue for a pole of any order

If f (z) has a pole of order m at z0, then the Laurent series is

mm

zz

b

zz

b

zz

bzzaazf

)()()()(

02

0

2

0

1010

)()(lim)!1(

1)(Res 0)1(

)1(

00

zfzzdz

d

mzf m

m

m

zzzz

mm

mmmm

bzzb

zzbzzazzazfzz

2

02

101

101000

)(

)()()()()(

now differentiate m1 times and let zz0 to get:

10)1(

)1(

)!1()()(lim0

bmzfzzdz

d mm

m

zz

Page 27: (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue

27

Section 8

We saw that the integral of an analytic function f (z) over a closed curve C when f (z) has one singular point inside C is

12)( jbdzzfC

C

0z

b1 is the residue of f (z) at z0

The Residue Theorem

C

Residue Theorem: Let f (z) be an analyticfunction inside and on a closed path Cexcept for at k singular points inside C.Then

k

izz

C

zfjdzzfi1

)(Res2)(

Page 28: (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue

28

Section 8

Example

Integrate the function around

C

zz

z

2

2

zz

z

zz

zjdz

zz

zzz

C21202

2Res

2Res2

2

2z

32

lim2

Res

21

2lim

2Res

121

020

z

z

zz

zz

z

zz

z

zz

zz

jdzzz

z

C

222

Page 29: (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue

29

Section 8

Example

Integrate the function around

C

zz

z

2

2

zz

z

zz

zjdz

zz

zzz

C21202

2Res

2Res2

2

2z

32

lim2

Res

21

2lim

2Res

121

020

z

z

zz

zz

z

zz

z

zz

zz

jdzzz

z

C

222

Page 30: (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue

30

Section 8

Example

Integrate the function around

C

zz

z

2

2

zz

z

zz

zjdz

zz

zzz

C21202

2Res

2Res2

2

2z

32

lim2

Res

21

2lim

2Res

121

020

z

z

zz

zz

z

zz

z

zz

zz

jdzzz

z

C

222

Page 31: (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue

31

Section 8

Example

Integrate the function around

C

zz

z

2

2

zz

z

zz

zjdz

zz

zzz

C21202

2Res

2Res2

2

2z

32

lim2

Res

21

2lim

2Res

121

020

z

z

zz

zz

z

zz

z

zz

zz

jdzzz

z

C

222

Page 32: (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue

32

Section 8

Example

Integrate the function around

C

zz

z

2

2

zz

z

zz

zjdz

zz

zzz

C21202

2Res

2Res2

2

2z

32

lim2

Res

21

2lim

2Res

121

020

z

z

zz

zz

z

zz

z

zz

zz

jdzzz

z

C

222

Page 33: (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue

33

Section 8Proof of Residue TheoremEnclose all the singular pointswith little circles C1, C1, Ck.

f (z) is analytic in here

By Cauchy’s Integral Theorm for multiply connected regions:

kCCCC

dzzfdzzfdzzfdzzf )()()()(21

C

But the integrals around each of the small circles is just theresidue at each singular point inside that circle, and so

k

izz

C

zfjdzzfi1

)(Res2)(

Page 34: (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue

34

Section 8

Topics not Covered

(1) Another formula for the residue at a simple pole (when f (z) is a rational function p(z)q(z),

(2) Evaluation of real integrals using the Residue theorem

(3) Evaluation of improper integrals using the Residue theorem

)(

)()(Res

0

0

0 zq

zpzf

zz

2

0 sin2

de.g. using jez

dxxx

x

45

124

2

e.g.