1 make&sense&of&problemsand& persevere&in&solvingthem.&

8
Standards for Mathematical Practice 1 Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, “Does this make sense?” They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

Upload: others

Post on 25-Oct-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 Make&sense&of&problemsand& persevere&in&solvingthem.&

Standards  for  Mathematical  Practice    

 

1 Make  sense  of  problems  and  persevere  in  solving  them.  

         

Mathematically  proficient  students  start  by  explaining  to  themselves  the  meaning  of  a  problem  and  looking  for  entry  points  to  its  solution.  They  analyze  givens,  constraints,  relationships,  and  goals.  They  make  conjectures  about  the  form  and  meaning  of  the  solution  and  plan  a  solution  pathway  rather  than  simply  jumping  into  a  solution  attempt.  They  consider  analogous  problems,  and  try  special  cases  and  simpler  forms  of  the  original  problem  in  order  to  gain  insight  into  its  solution.  They  monitor  and  evaluate  their  progress  and  change  course  if  necessary.  Older  students  might,  depending  on  the  context  of  the  problem,  transform  algebraic  expressions  or  change  the  viewing  window  on  their  graphing  calculator  to  get  the  information  they  need.  Mathematically  proficient  students  can  explain  correspondences  between  equations,  verbal  descriptions,  tables,  and  graphs  or  draw  diagrams  of  important  features  and  relationships,  graph  data,  and  search  for  regularity  or  trends.  Younger  students  might  rely  on  using  concrete  objects  or  pictures  to  help  conceptualize  and  solve  a  problem.  Mathematically  proficient  students  check  their  answers  to  problems  using  a  different  method,  and  they  continually  ask  themselves,  “Does  this  make  sense?”  They  can  understand  the  approaches  of  others  to  solving  complex  problems  and  identify  correspondences  between  different  approaches.    

Page 2: 1 Make&sense&of&problemsand& persevere&in&solvingthem.&

Standards  for  Mathematical  Practice  

2 Reason  abstractly  and  quantitatively.  

    Mathematically  proficient  students  make  sense  of  quantities  and  their  relationships  in  

problem  situations.  They  bring  two  complementary  abilities  to  bear  on  problems  involving  quantitative  relationships:  the  ability  to  decontextualize—to  abstract  a  given  situation  and  represent  it  symbolically  and  manipulate  the  representing  symbols  as  if  they  have  a  life  of  their  own,  without  necessarily  attending  to  their  referents—and  the  ability  to  contextualize,  to  pause  as  needed  during  the  manipulation  process  in  order  to  probe  into  the  referents  for  the  symbols  involved.  Quantitative  reasoning  entails  habits  of  creating  a  coherent  representation  of  the  problem  at  hand;  considering  the  units  involved;  attending  to  the  meaning  of  quantities,  not  just  how  to  compute  them;  and  knowing  and  flexibly  using  different  properties  of  operations  and  objects.      

Page 3: 1 Make&sense&of&problemsand& persevere&in&solvingthem.&

Standards  for  Mathematical  Practice  

3 Construct  viable  arguments  and  critique  the  reasoning  of  others.  

 Mathematically  proficient  students  understand  and  use  stated  assumptions,  definitions,  and  previously  established  results  in  constructing  arguments.  They  make  conjectures  and  build  a  logical  progression  of  statements  to  explore  the  truth  of  their  conjectures.  They  are  able  to  analyze  situations  by  breaking  them  into  cases,  and  can  recognize  and  use  counterexamples.  They  justify  their  conclusions,  communicate  them  to  others,  and  respond  to  the  arguments  of  others.  They  reason  inductively  about  data,  making  plausible  arguments  that  take  into  account  the  context  from  which  the  data  arose.  Mathematically  proficient  students  are  also  able  to  compare  the  effectiveness  of  two  plausible  arguments,  distinguish  correct  logic  or  reasoning  from  that  which  is  flawed,  and—if  there  is  a  flaw  in  an  argument—explain  what  it  is.  Elementary  students  can  construct  arguments  using  concrete  referent  such  as  objects,  drawings,  diagrams,  and  actions.  Such  arguments  can  make  sense  and  be  correct,  even  though  they  are  not  generalized  or  made  formal  until  later  grades.  Later,  students  learn  to  determine  domains  to  which  an  argument  applies.  Students  at  all  grades  can  listen  or  read  the  arguments  of  others,  decide  whether  they  make  sense,  and  ask  useful  questions  to  clarify  or  improve  the  arguments.  

Page 4: 1 Make&sense&of&problemsand& persevere&in&solvingthem.&

Standards  for  Mathematical  Practice  

4 Model  with  mathematics.      

Mathematically  proficient  students  can  apply  the  mathematics  they  know  to  solve  problems  arising  in  everyday  life,  society,  and  the  workplace.  In  early  grades,  this  might  be  as  simple  as  writing  an  addition  equation  to  describe  a  situation.  In  middle  grades,  a  student  might  apply  proportional  reasoning  to  plan  a  school  event  or  analyze  a  problem  in  the  community.  By  high  school,  a  student  might  use  geometry  to  solve  a  design  problem  or  use  a  function  to  describe  how  one  quantity  of  interest  depends  on  another.  Mathematically  proficient  students  who  can  apply  what  they  know  are  comfortable  making  assumptions  and  approximations  to  simplify  a  complicated  situation,  realizing  that  these  may  need  revision  later.  They  are  able  to  identify  important  quantities  in  a  practical  situation  and  map  their  relationships  using  such  tools  as  diagrams,  two-­‐way  tables,  graphs,  flowcharts  and  formulas.  They  can  analyze  those  relationships  mathematically  to  draw  conclusions.  They  routinely  interpret  their  mathematical  results  in  the  context  of  the  situation  and  reflect  on  whether  the  results  make  sense,  possibly  improving  the  model  if  it  has  not  served  its  purpose.  

Page 5: 1 Make&sense&of&problemsand& persevere&in&solvingthem.&

Standards  for  Mathematical  Practice  

5 Use  appropriate  tools  strategically.  

  Mathematically  proficient  students  consider  the  available  tools  when  solving  a  mathematical  problem.  These  tools  might  include  pencil  and  paper,  concrete  models,  a  ruler,  a  protractor,  a  calculator,  a  spreadsheet,  a  computer  algebra  system,  a  statistical  package,  or  dynamic  geometry  software.  Proficient  students  are  sufficiently  familiar  with  tools  appropriate  for  their  grade  or  course  to  make  sound  decisions  about  when  each  of  these  tools  might  be  helpful,  recognizing  both  the  insight  to  be  gained  and  their  limitations.  For  example,  mathematically  proficient  high  school  students  analyze  graphs  of  functions  and  solutions  generated  using  a  graphing  calculator.  They  detect  possible  errors  by  strategically  using  estimation  and  other  mathematical  knowledge.  When  making  mathematical  models,  they  know  that  technology  can  enable  them  to  visualize  the  results  of  varying  assumptions,  explore  consequences,  and  compare  predictions  with  data.  Mathematically  proficient  students  at  various  grade  levels  are  able  to  identify  relevant  external  mathematical  resources,  such  as  digital  content  located  on  a  website,  and  use  them  to  pose  or  solve  problems.  They  are  able  to  use  technological  tools  to  explore  and  deepen  their  understanding  of  concepts.      

Page 6: 1 Make&sense&of&problemsand& persevere&in&solvingthem.&

Standards  for  Mathematical  Practice  

6 Attend  to  precision.        

       

Mathematically  proficient  students  try  to  communicate  precisely  to  others.  They  try  to  use  clear  definitions  in  discussion  with  others  and  in  their  own  reasoning.  They  state  the  meaning  of  the  symbols  they  choose,  including  using  the  equal  sign  consistently  and  appropriately.  They  are  careful  about  specifying  units  of  measure,  and  labeling  axes  to  clarify  the  correspondence  with  quantities  in  a  problem.  They  calculate  accurately  and  efficiently,  express  numerical  answers  with  a  degree  of  precision  appropriate  for  the  problem  context.  In  the  elementary  grades,  students  give  carefully  formulated  explanations  to  each  other.  By  the  time  they  reach  high  school  they  have  learned  to  examine  claims  and  make  explicit  use  of  definitions.    

Page 7: 1 Make&sense&of&problemsand& persevere&in&solvingthem.&

Standards  for  Mathematical  Practice  

7 Look  for  and  make  use  of  structure.  

         

Mathematically  proficient  students  look  closely  to  discern  a  pattern  or  structure.  Young  students,  for  example,  might  notice  that  three  and  seven  more  is  the  same  amount  as  seven  and  three  more,  or  they  may  sort  a  collection  of  shapes  according  to  how  many  sides  the  shapes  have.  Later,  students  will  see  7  ×  8  equals  the  well  remembered  7  ×  5  +  7  ×  3,  in  preparation  for  learning  about  the  distributive  property.  In  the  expression  x2+  9x  +  14,  older  students  can  see  the  14  as  2  ×  7  and  the  9  as  2  +  7.  They  recognize  the  significance  of  an  existing  line  in  a  geometric  figure  and  can  use  the  strategy  of  drawing  an  auxiliary  line  for  solving  problems.  They  also  can  step  back  for  an  overview  and  shift  perspective.  They  can  see  complicated  things,  such  as  some  algebraic  expressions,  as  single  objects  or  as  being  composed  of  several  objects.  For  example,  they  can  see  5  –  3(x  –  y)2  as  5  minus  a  positive  number  times  a  square  and  use  that  to  realize  that  its  value  cannot  be  more  than  5  for  any  real  numbers  x  and  y.  

Page 8: 1 Make&sense&of&problemsand& persevere&in&solvingthem.&

Standards  for  Mathematical  Practice  

8 Look  for  and  express  regularity  in  repeated  reasoning.  

 Mathematically  proficient  students  notice  if  calculations  are  repeated,  and  look  both  for  general  methods  and  for  shortcuts.  Upper  elementary  students  might  notice  when  dividing  25  by  11  that  they  are  repeating  the  same  calculations  over  and  over  again,  and  conclude  they  have  a  repeating  decimal.  By  paying  attention  to  the  calculation  of  slope  as  they  repeatedly  check  whether  points  are  on  the  line  through  (1,  2)  with  slope  3,  middle  school  students  might  abstract  the  equation  (y  –  2)/(x  –  1)  =  3.  Noticing  the  regularity  in  the  way  terms  cancel  when  expanding  (x  –  1)(x  +  1),  (x  –  1)(x2+  x  +  1),  and  (x  –  1)(x3+  x2+  x  +  1)  might  lead  them  to  the  general  formula  for  the  sum  of  a  geometric  series.  As  they  work  to  solve  a  problem,  mathematically  proficient  students  maintain  oversight  of  the  process,  while  attending  to  the  details.  They  continually  evaluate  the  reasonableness  of  their  intermediate  results.