1 ee462l, spring 2014 dc−dc boost converter. 2 v in + v out – c i c i i in buck converter i l l...

21
1 EE462L, Spring 2014 DC−DC Boost Converter

Upload: tyrone-edwards

Post on 16-Dec-2015

230 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: 1 EE462L, Spring 2014 DC−DC Boost Converter. 2 V in + V out – C i C I i in Buck converter i L L + v L – Boost converter V in + V out – C i C I i in i

1

EE462L, Spring 2014DC−DC Boost Converter

Page 2: 1 EE462L, Spring 2014 DC−DC Boost Converter. 2 V in + V out – C i C I i in Buck converter i L L + v L – Boost converter V in + V out – C i C I i in i

2

Vin +

Vout

– C iC

Iout iinBuck converter

iL

L

+ vL –

Boost converter

Vin +

Vout

– C iC

Iout iin

iL

L

+ vL –

Page 3: 1 EE462L, Spring 2014 DC−DC Boost Converter. 2 V in + V out – C i C I i in Buck converter i L L + v L – Boost converter V in + V out – C i C I i in i

3

Boost converter

This is a much more unforgiving circuit than the buck converter

Vin +

Vout

– C iC

Iout iin

iL

L

+ vL – iD

• If the MOSFET gate driver sticks in the “on” position, then there is a short circuit through the MOSFET – blow MOSFET!

• If the load is disconnected during operation, so that Iout = 0, then L continues to push power to the right and very quickly charges C up to a high value (250V) – blow diode and MOSFET!

• Before applying power, make sure that your D is at the minimum, and that a load is solidly connected

!

Page 4: 1 EE462L, Spring 2014 DC−DC Boost Converter. 2 V in + V out – C i C I i in Buck converter i L L + v L – Boost converter V in + V out – C i C I i in i

4

Boost converter

Vin +

Vout

– C iC

Iout iin

iL

L

+ vL – iD

• Modify your MOSFET firing circuit for Boost Converter operation (see the MOSFET Firing Circuit document)

• Limit your output voltage to 120V

Page 5: 1 EE462L, Spring 2014 DC−DC Boost Converter. 2 V in + V out – C i C I i in Buck converter i L L + v L – Boost converter V in + V out – C i C I i in i

5

Boost converter

Using KVL and KCL in the average sense, the average values are

+ 0 V – Iout

Vin +

Vout

– C

Iout

L

0 A

Iin

Vin +

Vout

– C iC

Iout iin

iL

L

+ vL – iD

Find the input/output equation by examining the voltage across the inductor

Page 6: 1 EE462L, Spring 2014 DC−DC Boost Converter. 2 V in + V out – C i C I i in Buck converter i L L + v L – Boost converter V in + V out – C i C I i in i

6

Switch closed for DT seconds

Reverse biased, thus the diode is openL

V

dt

di inL

for DT seconds

Vin +

Vout

– C

Iout iin

iL

L

Iout

Note – if the switch stays closed, the input is short circuited!

+ Vin −

Page 7: 1 EE462L, Spring 2014 DC−DC Boost Converter. 2 V in + V out – C i C I i in Buck converter i L L + v L – Boost converter V in + V out – C i C I i in i

7

Switch open for (1 − D)T seconds

Diode closed. Assume continuous conduction.L

VV

dt

di outinL

Vin +

Vout

– C

Iout iin

iL

L

for (1−D)T seconds

(iL – Iout)

+ (Vin − Vout ) −

Page 8: 1 EE462L, Spring 2014 DC−DC Boost Converter. 2 V in + V out – C i C I i in Buck converter i L L + v L – Boost converter V in + V out – C i C I i in i

8

Since the average voltage across L is zero

01 outininLavg VVDVDV

inininout VDVDVDV )1(

D

VV inout

1

The input/output equation becomes

A realistic upper limit on boost is 5 times

!

Page 9: 1 EE462L, Spring 2014 DC−DC Boost Converter. 2 V in + V out – C i C I i in Buck converter i L L + v L – Boost converter V in + V out – C i C I i in i

9

Examine the inductor current

Switch closed,

Switch open,

L

V

dt

diVv inLinL ,

L

VV

dt

diVVv outinLoutinL

,

sec/ AL

Vin

DT (1 − D)T

T

Imax

Imin

Iavg = Iin

Iavg = Iin is half way between

Imax and Imin

sec/ AL

VV outin

ΔI

iL

Page 10: 1 EE462L, Spring 2014 DC−DC Boost Converter. 2 V in + V out – C i C I i in Buck converter i L L + v L – Boost converter V in + V out – C i C I i in i

10

Inductor current rating

22222

12

1

12

1IIIII inppavgLrms

2222

3

42

12

1inininLrms IIII

Max impact of ΔI on the rms current occurs at the boundary of

continuous/discontinuous conduction, where ΔI =2Iin

inLrms II3

2

2Iin

0Iavg = Iin ΔI

iL

Use max

Page 11: 1 EE462L, Spring 2014 DC−DC Boost Converter. 2 V in + V out – C i C I i in Buck converter i L L + v L – Boost converter V in + V out – C i C I i in i

11

MOSFET and diode currents and current ratings

inrms II3

2

Use max

2Iin

0

2Iin

0

Take worst case D for each

Vin +

Vout

– C iC

Iout iin

iL

L

+ vL – iD

Page 12: 1 EE462L, Spring 2014 DC−DC Boost Converter. 2 V in + V out – C i C I i in Buck converter i L L + v L – Boost converter V in + V out – C i C I i in i

12

Capacitor current and current rating

2Iin −Iout

−Iout

0

Max rms current occurs at the boundary of continuous/discontinuous

conduction, where ΔI =2Iout

outCrms II

Use max

iC = (iD – Iout)

Vin +

Vout

– C iC

Iout iin

iL

L

iD

See the lab document for the derivation

Page 13: 1 EE462L, Spring 2014 DC−DC Boost Converter. 2 V in + V out – C i C I i in Buck converter i L L + v L – Boost converter V in + V out – C i C I i in i

13

Worst-case load ripple voltage

Cf

I

C

TI

C

QV outout

The worst case is where C provides Iout for most of the period. Then,

−Iout

0

iC = (iD – Iout)

Page 14: 1 EE462L, Spring 2014 DC−DC Boost Converter. 2 V in + V out – C i C I i in Buck converter i L L + v L – Boost converter V in + V out – C i C I i in i

14

Voltage ratings

Diode sees Vout

MOSFET sees Vout

C sees Vout

• Diode and MOSFET, use 2Vout

• Capacitor, use 1.5Vout

Vin +

Vout

– C

Iout iin

iL

L

Vin +

Vout

– C

Iout iin

iL

L

Page 15: 1 EE462L, Spring 2014 DC−DC Boost Converter. 2 V in + V out – C i C I i in Buck converter i L L + v L – Boost converter V in + V out – C i C I i in i

15

Continuous current in L

sec/ AL

VV outin

fL

DD

VTD

L

VD

V

TDL

VVI

boundary

in

boundary

inin

boundary

inoutin

11

11

1112

fI

DVL

in

inboundary 2

2Iin

0Iavg = Iin

iL

(1 − D)T

fI

VL

in

in

2 guarantees continuous conduction

Then, considering the worst case (i.e., D → 1),

use max

use min

, 2fL

DVI

boundary

inin

Page 16: 1 EE462L, Spring 2014 DC−DC Boost Converter. 2 V in + V out – C i C I i in Buck converter i L L + v L – Boost converter V in + V out – C i C I i in i

16

Impedance matching

out

outload I

VR

equivR

loadout

out

out

out

in

inequiv RD

I

VD

D

IVD

I

VR 22 11

1

1

DC−DC Boost Converter

+

Vin

+

Iin

+

Vin

Iin

Equivalent from source perspective

Source D

VV inout

1

inout IDI 1

Page 17: 1 EE462L, Spring 2014 DC−DC Boost Converter. 2 V in + V out – C i C I i in Buck converter i L L + v L – Boost converter V in + V out – C i C I i in i

17

Example of drawing maximum power from solar panel

PV Station 13, Bright Sun, Dec. 6, 2002

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40 45

V(panel) - volts

I - a

mp

s

Isc

Voc

Pmax is approx. 130W

(occurs at 29V, 4.5A)

44.65.4

29

A

VRload

For max power from panels, attach

I-V characteristic of 6.44Ω resistor

But as the sun conditions change, the “max power resistance” must also change

Page 18: 1 EE462L, Spring 2014 DC−DC Boost Converter. 2 V in + V out – C i C I i in Buck converter i L L + v L – Boost converter V in + V out – C i C I i in i

18

Connect a 100Ω resistor directly, extract only 14W

PV Station 13, Bright Sun, Dec. 6, 2002

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40 45

V(panel) - volts

I - a

mp

s

130W

6.44Ω

resistor

100Ω resistor

14W

75.0100

44.611 ,1 2

load

equivloadequiv R

RDRDR

To extract maximum power (130W), connect a boost converter between the panel and the load resistor, and use D to modify the equivalent load resistance seen by the source so that maximum power is transferred

So, the boost converter reflects a high load resistance to a low resistance on the source side

Page 19: 1 EE462L, Spring 2014 DC−DC Boost Converter. 2 V in + V out – C i C I i in Buck converter i L L + v L – Boost converter V in + V out – C i C I i in i

19

Worst-Case Component Ratings Comparisons for DC-DC Converters

Converter Type

Input Inductor

Current (Arms)

Output Capacitor Voltage

Output Capacitor Current (Arms)

Diode and MOSFET Voltage

Diode and MOSFET Current (Arms)

Boost inI

3

2

1.5 outV outI 2 outV inI

3

2

5A 10A10A 120V 120V

Likely worst-case boost situation

5.66A 200V, 250V 16A, 20A

Our components

9A 250V

MOSFET. 250V, 20A

L. 100µH, 9A

C. 1500µF, 250V, 5.66A p-p

Diode. 200V, 16A

BOOST DESIGN

Page 20: 1 EE462L, Spring 2014 DC−DC Boost Converter. 2 V in + V out – C i C I i in Buck converter i L L + v L – Boost converter V in + V out – C i C I i in i

20

Comparisons of Output Capacitor Ripple Voltage

Converter Type Volts (peak-to-peak) Boost

Cf

Iout

5A

1500µF 50kHz

0.067V

BOOST DESIGN

MOSFET. 250V, 20A

L. 100µH, 9A

C. 1500µF, 250V, 5.66A p-p

Diode. 200V, 16A

Page 21: 1 EE462L, Spring 2014 DC−DC Boost Converter. 2 V in + V out – C i C I i in Buck converter i L L + v L – Boost converter V in + V out – C i C I i in i

21

Minimum Inductance Values Needed to Guarantee Continuous Current

Converter Type For Continuous

Current in the Input Inductor

For Continuous Current in L2

Boost

fI

VL

in

in

2

40V

2A 50kHz

200µH

BOOST DESIGN

MOSFET. 250V, 20A

L. 100µH, 9A

C. 1500µF, 250V, 5.66A p-p

Diode. 200V, 16A