حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص...

41
1 Ship Structures

Upload: abdallah-mansour

Post on 16-Feb-2016

233 views

Category:

Documents


1 download

DESCRIPTION

حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

TRANSCRIPT

Page 1: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

1

Ship Structures

Page 2: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

2

6 .2 Ship Structural Load

Distributed Forces ; weight & buoyancy

G

BWL

BF

< Floating Body in Static Equilibrium>

Resultant weight force due tothe distributed weight

Result Buoyancy force due tothe distributed buoyancy

-Two forces are equal in magnitude.- The centroid of the forces are vertically in line.

Page 3: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

3

Distributed Forces

Distributed Buoyancy

- Buoyant forces can be considered as a distributed force.

2 LT/ft

barge

50 ft

100LT50ftft

2LTFB uniformlydistributedforce

Page 4: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

4

6.2.1 Distributed Forces

Distributed Weight

-Weight of ship can be presented as a distributed force.- Case I : Uniformly distributed weight

2 LT/ft

barge

2 LT/ft

50 ft

B

s

F

100LT50ftft

2LTΔ

Page 5: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

5

Distributed Weight

2 LT/ft

barge

1 LT/ft

50 ft

B

s

F100LT

100LT10ftft

1LT10ftft

2LT10ftft

4LT10ftft

2LT10ftft

1LTΔ

- Case II : Non-uniformly distributed weight

2 LT/ft

4 LT/ft

2 LT/ft1 LT/ft

6.2.1 Distributed Forces

10ft

Page 6: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

6

-Shear stress present at points P, Q, R, S & T due to unbalanced forces at top and bottom.- Load diagram can be drawn by summing up the distributed force vertically. 4 LT/ft

2 LT/ft

1 LT/ft2 LT/ft 2 LT/ft1 LT/ft

1LT/ft2LT/ft

1LT/ft

O P Q R S T

6.2.2 Shear Stress

Load DiagramO P Q R S T

P Shear Force at pont P

Page 7: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

7

6.2.2. Shear Stress

How to Reduce Shear Stress of ship

• To change the underwater hull shape so that buoyancy distribution matches that of weight distribution. - The step like shape is very inefficient with regard to the resistance. - Since the loading condition changes every time, this method is not feasible. • To concentrate the ship hull strength in an area where large shear stress exists . This can be done by - using higher strength material - increasing the cross sectional area of the structure.

Page 8: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

8

6.2.3 Logitudinal Bending Stress

Longitudinal Bending Moment and Stress

• Uneven load distribution will produce a longitudinal Bending Moment.

Bending Moment

- Buoyant force concentrates at bow and stern.- Weight concentrates at middle of ship.

• The longitudinal bending moment will create a significant stress in the structure called bending stress.

Page 9: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

9

Sagging

Hogging

Bending Moment

BowStern Keel : tension

Weather deck : compression

Bending Moment

BowStern

Keel : compression

Weather deck : tension

6.2.3 Logitudinal Bending Stress

Page 10: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

10

Sagging & Hogging on Waves

• Sagging condition

• Hogging condition

TroughCrest

Trough Crest

Crest

Trough

6.2.3 Logitudinal Bending Stress

Page 11: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

11

Quantifying Bending Stress

Compression

Tension

• Sagging condition

Neutral Axis

y

AB

A

B

IM y

Bending Stress :M : Bending MomentI : 2nd Moment of area of the cross sectiony : Vertical distance from the neutral axis : tensile (+) or compressive(-) stress

6.2.3 Logitudinal Bending Stress

y

Page 12: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

12

Quantifying Bending Stress

• Hogging condition y

Compression

Tension

Neutral Axis

A

B

A

B

Neutral Axis : geometric centroid of the cross section or transition between compression and tension

6.2.3 Logitudinal Bending Stress

Page 13: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

13

Example :Bending Stress of Ship Hull

• Ship could be at sagging condition even in calm water .• Generally, bending moments are largest at the midship area.

NeutralAxis

BowStern

A

B

Deck

Keel

B

ADeck : CompressionKeel : Tension

Tickness

6.2.3 Logitudinal Bending Stress

cross section

Page 14: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

14

Example :Bending Stress of Ship Hull

Neutral Axis

BowStern

A

B

Deck

Keel

B

A

Tickness

6.2.3 Logitudinal Bending Stress

cross section

y

Keel

This ship has lager bending stress at keel than deck.

N.A.

Page 15: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

15

Reducing the Effect of Bending stress

• Bending moment are largest at midship of a ship.• Ship will experience the greatest bending stress at the deck and keel.• The bending stress can be reduced by using: - higher strength steel - larger cross sectional area of longitudinal structural elements

6.2.3 Logitudinal Bending Stress

Page 16: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

16

Hull Structure Interaction

• Bending stress at the superstructure is large because of its distance from the neutral axis.• In Sagging or Hogging condition, severe shear stresses between deck of hull and bottom of the superstructure will be created.• This shear stresses will cause crack in area of sharp corners where the hull and superstructure connect.

This stress can be reduced Expansion Joint

6.2.3 Logitudinal Bending Stress

Page 17: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

17

Compression or Tension on deck

Expansion Joint

By using Expansion Joint, the super structure will beallowed to flex along with the hull.

Compression or Tension on bottom

6.2.3 Logitudinal Bending Stress

Page 18: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

18

The ship in still water. The water supports the ship's weight evenly along the length. Notice that discontinuities cause stress risers even in still water -- for example, around the aft expansion joint (look at the area of lighter blue).

Titanic

Page 19: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

19

The ship would have been at when the first three compartments flooded. This imbalance between the weight and buoyancy causes the bow to droop downward . Stresses in the bow are generally higher than they were in the still condition. Notice that the increase in stresses around the forward expansion joint causes a light blue peak.

Titanic

Page 20: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

20

The condition of the ship just before sinking. The first six compartments are flooded, and the stern has risen out of the water. This huge imbalance causes severe bending of the hull in the midship region.

Titanic

Page 21: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

21

This huge imbalance causes severe bending of the

hull in the midship region. This large red area surrounds

the aft expansion joint, while a smaller red area occurs

around the forward expansion joint. During the sinking,

the forward expansion joint opened up sufficiently to

break the two stack stays which crossed it. The hull

broke into three pieces. The middle piece was a 60-foot

long section centered about the aft expansion joint. This

matches the location of the large red area in the image.

Titanic

Page 22: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

22

Along with the remaining windows and glass, the large gap in the center of the photo is one of Titanic's two expansion joints.These joints were a structural addition to accommodate for mechanical stresses on the ship.

Titanic

Page 23: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

23

Example : Bending Stress

• Solid Beam

• I-Beam

bh

b=ftm

h=1ft

b

h

43

121

121 ftbhI

(1212I

0.6h

0.3b

12

)6.0)(3.0(23hbI

Page 24: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

24

Other Loads

Hydrostatic Loads

• Loading associated with hydrostatic pressure• Hydrostatic Loads are considerable in submarines• Hydrostatic pressure : ρghPHydStatic

Torsional Loads• Torsional Loads of hull are often insignificant• They can have effect on ships with large opening(s) in their weather deck. (e.g., research vessels)

Page 25: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

25

Other Loads

Weapon Loads

• Loading due to explosion of weapons or shock impact in both air and underwater• Naval Vessel should resist these forces• Naval vessel will often go through a series of shock trials during initial sea trials.

Page 26: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

26

6.3 Ship Structure

Structural Components

• Keel - Large center plane girder - Runs longitudinally along the bottom of the ship

• Plating - Thin pieces closing in the top, bottom and side of structure. - Contributes significantly to longitudinal hull strength. - Resists the hydrostatic pressure load (or side impact).

• Frame - A transverse member running from keel to deck. - Resists hydrostatic pressure, waves, impact, etc.

Girder: high strength structure running along the ship longitudinally.

Page 27: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

27

Ship Structure

Structural Components

• Stringer - Girders running along the sides of the ship. - Typically smaller than a longitudinal. - Provides longitudinal strength.

• Deck Beams - Transverse member of the deck frame

• Deck Girder - Longitudinal member of the deck frame (deck longitudinal)

Page 28: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

28

Page 29: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

29

6.3 Ship Structure (cont)

Structural Components

• Floor - Deep frame running from the keel to the turn of the bilge - Frames may be attached to the floors (Frame would be the part above the floor.)

• Longitudinal - Girders running parallel to the keel along the bottom. - It intersects floors at right angles. - It provides longitudinal strength.

Page 30: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

30

6.3.2 Framing System• Increase ship’s strength by: - adding framing element densely - increasing the thickness of plating and structural components

All this will increase cost, reduce space utillization and allow less mission equipment to be added

Optimization

• Longitudinal Framing System• Transverse Framing System• Combination of Framing System

Page 31: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

31

6.3.2 Framing System(cont)

Longitudinal Framing System

• Longitudinal Framing System : - Longitudinals are spaced frequently but shallower. - Frames are spaced widely. - Keel, longitudinals, stringers, deck girders, plates

• Primary role of longitudinal members : to resist the longitudinal bending stress due to sagging and hogging.

• A typical wave length in the ocean is 300ft. Ships of this length or greater are likely to experience considerable longitudinal bending stress.

• Ship that are longer than about 300ft (long ship) tend to have a greater number of longitudinal members than transverse members.

Page 32: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

32

Transverse Framing System

• Transverse Framing System : - Longitudinals are spaced widely but deep. - Frames are spaced closely and continuously• Transverse members : frame, floor, deck beam, platings• Primary role of transverse members : to resist the hydrostatic loads.• Ships shorter than 300ft and submersibles

6.3.2 Framing System(cont)

Page 33: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

33

Combined Framing System

• Combination of longitudinal and transverse framing system• Purpose : - To optimize the structural arrangement for the expected loading - To minimize the cost• Typical combination : - Longitudinals and stringers with shallow frame - Deep frame every 3rd or 4th frame

6.3.2 Framing System(cont)

Page 34: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

34

Page 35: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

35

6.3.3 Double Bottoms

• Two watertight bottoms with a void space in between to withstand - the upward pressure - bending stresses - bottom damage by grounding and underwater shock.• The double bottom provides a space for storing - fuel oil - ballast water & fresh water - smooth inner bottom which make it easier to arrange cargo & equipment and clean the cargo hold.

Page 36: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

36

6.3.4 Watertight Bulkheads

• Large bulkhead which splits the the hull into separate sections• Primary role - Stiffening the ship - Reducing the effect of damage • The careful positioning the bulkheads allows the ship to fulfill the damage stability criteria.• The bulkheads are often stiffened by steel members in the vertical and horizontal directions.

Page 37: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

37

6.4 Modes of Structural Failure

1. Tensile or Compressive Yield

• Slow plastic deformation of a structural component due to an applied stress greater than yield stress • To avoid the yield, Safety factors are considered for ship constructions. Safety factor = 2 or 3 (Maximum stress on ship hull will be 1/2 or 1/3 of yield stress.)

Page 38: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

38

6.4 Modes of Structural Failure (cont)

2. Buckling

• Substantial dimension changes and sudden loss of stiffness caused by the compression of long column or plate • Buckling load on ship : cargo, waves, impact loads, etc.• Ex : Deck buckling : by sagging or hogging, loading on deck Side plate buckling : by waves, shock, groundings column bucking : by excessive axial loading

Page 39: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

39

3. Fatigue Failure• The failure of a material from repeated application of stress such as from vibration • Endurance limit : stress below which will not fail from fatigue• Fatigue failure is effected by - material composition (impurities, carbon contents, internal defects) - surface finish - environments (corrosion, salinities, sulfites, moisture,..) - geometry (sharp corners, discontinuities) - workmanship (welding, fit-up)• The fatigue generally create cracks on the ship hull.

6.4 Modes of Structural Failure (cont)

Page 40: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

40

4. Brittle Fracture• A sudden catastrophic failure with little or no plastic deformation• Brittle fracture depends on - Material · Low toughness & high carbon material - Temperature · Material operating below its transition temperature - Geometry · Weak point for crack : sharp corners, edges - Type/Rate of Loading · Tensile/impact loadings are worse

6.4 Modes of Structural Failure (cont)

Page 41: حساب الاحمال والقوة وقوى الطفو وعزم الانحناء والقص وتوزيع

41

5. Creep

• The slow plastic deformation of material due to continuously applied stresses that are below its yield stress.• Example : piano wires• Creep is not usually a concern in ship structures.

6.4 Modes of Structural Failure (cont)