Энергия сольватации

Click here to load reader

Post on 08-Jan-2016

38 views

Category:

Documents

2 download

Embed Size (px)

DESCRIPTION

Энергия сольватации. соответствие между гидродинамическим и электростатическим описанием. +4 π Q -положительный точечный заряд, умноженный на 4 π – какая масса жидкости вытекает из точки за единицу времени - PowerPoint PPT Presentation

TRANSCRIPT

  • +4Q - , 4 - 4Q - , 4 - ( ) E - EdS -

  • , 4 - ! , .SEdS=4jQj

  • E S= 4Q E 4R2= 4Q :E=Q/ ( R2 )

  • 1E1n dS= 2E2n dS 1E1n= 2E2n

  • ( ):

  • 2 E S=4 S E=2

  • E = -grad

  • 1l 2l =0 1=2

  • q - - .S rj nj Qi Rj a j

  • - km m(1n)km Sm = (qk (rkmnm) /(rkm3) Sm rkm= rm- rk

  • m

  • m (E1n)m,self Sm = -2 (qm/ Sm) Sm=-2 qm (E1n)m,self Sm = -2qm[1-(Sm/{4Rm2})1/2 ]

    km ((1n)mk Sk) + (E1n)m,self Sm =0

    (E1n)m,self Sm = - km ((1n)mk Sk) ==- qm km (((rk- rm) nk) / | rk- rm |3)Sk

  • qm = (1- in/ out) E1n Sm/(4) E1n Sm=-4qm/ (1- in/ out) E1n Sm = (km (1n)km) Sm + (E1n)m,self Sm

  • A(PCM) q = -B(PCM) Q

  • COSMO m, m m .

    mm -

  • 1)

  • SMO.

  • . . .

  • .

  • 3.

  • SGB

  • SES SAS

  • SES (Solvent Excluded Surface) - .. , , . .SAS (Solvent Accessible Surface) - , . SES, SAS , [6]. SES [1b] (1) , , , (2) () -- (b) () , SES (GEPOL) [57-58] (d) , () (b) [59-60].

  • SES SAS

  • . SES (r1,r2,r3) SS (r1n,r2n,r3n)r1n=r1+n1*p_rol (1)r2n=r2+n2*p_rol (2)r3n=r3+n3*p_rol (3) p_rol ,n1, n2, n3- .1) , , . SS 2) , , . SS 3) . SS [(ratom+ p_rol)/ ratom]2 4) , 5) (/ , ) (187) (r1n,r2n,r3n)ESAS=j j sj + b (1) j=1,N ( SAS) :j = =0.00378 - /( 2)b=0.698 - /

  • --

  • -

  • (1)

  • . .

  • . . , . .

  • 1. : , . , . . , . . , .2. , , . 10 ( 1).3. , , . , . -, . -, , . /6, 9 ( 1), 8 ( 1). , 7 ( 1). 4. (1> /9), (2< /9): , , 6 ( 1). 5 ( 1).5. 1 2 (1< /9 2< /9), 1 ( 1). 6. 2 , . 7. 1 2 - , , 8. 1 1 , 2 2 -. ([(12/9)]). , , 2 2 , 1 1 - [(22/9)]). 4 , ( 1). . ( ):

  • 9. 1 2 (1/6, 1>2/9 , 2>/6 2>2/9). nmid - , nnew . - nnew nmid. (>/2) , 1 ( 1). 11. 1, 1, 2 2 (1
  • :1) . .2) , . (. 2) . . , Rch =1.5L. . . . L . - , Rch =1.5L. . . , , , L =Lmax. , , , ||rj|| , (j=1,,Na ). , ||rj|| < Rj. j L=Lj. L=Lmin. (, ) Rg1, Rg2. ( , ). . , : . ( 7 ) . ( ) SN. S1, S2. , SN S1 S2, . Rg1N, Rg2N. , L< Rg1N/2, L< Rg2N/2. , :. ( 8 ) . , . 3) -, 2 ( ) - b. : , ( 9 )N =2 - , ; Nb - , b;r - ; rb - - b; r - - ;4) . , -, . -, , . , -, , . - , 2. b ( ) : , ( 10 )N=2 - , ; Nb - , b;r - ; rb - - b; r - - b;5) , , , , , .6) , ( ) . ( b) . - :, ( 11 )N - , ; Nb - , b;r - ; rb - - b; r - - ;7) , .8) , .9) . .10) , . , .

  • , . , .

  • , . , .

  • ) , . . , () .) , . , . ) . .

  • - ( GEPOL [58] ( COSMO [16],[62], [63]) , [63] , . . , . . [1b], [65] . [17] , . [15] (. 3.2.2) . [63]

  • (, , ) : (1)

    - .

  • (). .

  • - ()

  • .

  • . .

  • Lgi=sign(ng[agi x ag(i+1)]) sg=iLgi[agi x ag(i+1)] jkagi = jkrgi-jkrg jkag(i+1)= jkrg(i+1)- jkrg Sgi= ([jkagi x ag(i+1)]+ [agi x jkag(i+1)]) Lgi jkng(new)=(i=1 Neg(Sgi- ng(new) (ng(new) Sgi)))/|sg|

  • : 1) , , . SS 2) , , . SS 3) . SS [(ratom+ p_rol)/ ratom]2 4) , 5) (/ , ) (187) (r1n,r2n,r3n) (192) , r1n,r2n,r3n:r1n=r1+n1*p_rol (1)r2n=r2+n2*p_rol (2)r3n=r3+n3*p_rol (3) :

    a = r2n-r1n (6)b = r3n-r1n (7)sj = |axb|/2 (8) :G=j j sj + b - /() - j=1,N ( SAS) S4 = 2|axb| (11)a= r2n-r1n (12)b= r3n-r1n (13)sj = ((bb)*(aa)+(aa)*(bb)-(ab)(( ab)+(ab)))/S4 (14)

  • - , ( ) - - ( )

  • , .

  • COSMO

  • D

  • A

  • D (1)

  • B 4 FEPS=2(1- )/(+1)

  • A Dcc5=

  • SGB

  • Energy PCM vs COSMO as a function of the grid step (for =)Y axis |[E(cosmo)-E(pcm)]/E(pcm)|

    Chart2

    0.0140648734

    0.0184541087

    0.0996334242

    1

    78.5

    COSMOPCMdelta

    0.2-3138.36-3134.743.62

    0.3-3138.36-3132.395.97

    0.4-3134.23-3127.157.08

    inf

    COSMOPCMdelta

    0.2-3199.01-3199.460.450.0140648734

    0.3-3197.71-3197.120.590.0184541087

    0.4-3194.88-3191.73.180.0996334242

    1

    2

    3

  • Gradiens PCM vs COSMO (for =)

  • Gradiens COSMO and SGB vs PCM (for =78.5)

  • Gradiens PCM, COSMO, SGB: anal vs num (for =78.5)