计算机网络技术的 历史和新进展

93
1 计计计计计计计计 计计计计计计

Upload: riley-bruce

Post on 30-Dec-2015

134 views

Category:

Documents


0 download

DESCRIPTION

计算机网络技术的 历史和新进展. 高速计算机信息网络是信息社会的神经和血管 体系结构:网络的骨架和神经 协议:网络的心脏和血液. 主要内容. 网络概述 Internet 的发展和成功经验 计算机网络技术的历史回顾 国际高速计算机网络研究计划 中国高速计算机网络研究计划. What is a Network? from end system point of view. Network offers a service: move information - PowerPoint PPT Presentation

TRANSCRIPT

1

计算机网络技术的

历史和新进展

2

高速计算机信息网络是信息社会的神经和血管

体系结构:网络的骨架和神经

协议:网络的心脏和血液

3

主要内容

网络概述 Internet 的发展和成功经验 计算机网络技术的历史回顾 国际高速计算机网络研究计划 中国高速计算机网络研究计划

4

What is a Network?from end system point of view

Network offers a service: move information- bird, fire, messenger, truck, telegraph, telephone, Internet …

- another example, transportation service: move objects

• horse, train, truck, airplane ... What distinguish different types of networks?

- The services they provide What distinguish the services?

- latency

- bandwidth

- loss rate

- number of end systems

- service interface (how to invoke?)

- other details

• reliability, unicast vs. multicast, real-time, message vs. byte ...

5

What is a Network?Infrastructure Centric View

Electrons and photons as communication medium

Links: fiber, copper, satellite, … Switches: mechanical/electronic/optical, crossbar

/Banyan Protocols: TCP/IP, ATM, MPLS, SONET, Etherne

t, PPP, X.25, FrameRelay, AppleTalk, IPX, SNA Functionalities: routing, error control, congestion

control, Quality of Service (QoS) Applications: FTP, WEB, X windows, ...

6

Types of Networks

Geographical distance- Local Area Networks (LAN): Ethernet, Token ring, FDDI- Metropolitan Area Networks (MAN): DQDB, SMDS- Wide Area Networks (WAN): X.25, ATM, frame relay

Information type- data networks vs. telecommunication networks

Application type- special purpose networks: airline reservation network,

banking network, credit card network, telephony - general purpose network: Internet

7

Types of Networks

Right to use- private: enterprise networks- public: telephony network, Internet

Ownership of protocols- proprietary: SNA- open: IP

Technologies- terrestrial vs. satellite- wired vs. wireless

Protocols- IP, AppleTalk, SNA

8

计算机网络发展历史回顾

七十年代的计算机网络 X.25 分组交换网:各国的电信部门建设运行 各种专用的网络体系结构: SNA , DNA Internet 的前身 ARPANET 进行实验运行

八十年代的计算机网络 标准化计算机网络体系结构: OSI 局域网络 LAN 技术空前发展 建成 NSFNET , Internet 初具规模

九十年代的计算机网络 Internet 空前发展 Web 技术在 Internet/Intranet 得到广泛应用

9

主要内容

网络概述 Internet 的发展和成功经验 计算机网络技术的历史回顾 国际高速计算机网络研究计划 中国高速计算机网络研究计划

10

The Internet

Global scale, general purpose, heterogeneous-technologies, public, computer network

Internet Protocol- open standard: Internet Engineering Task Force (IETF) as

standard body

- technical basis for other types of networks

• Intranet: enterprise IP network

Developed by the research community

11

History of the Internet

70’s: started as a research project, 56 kbps, < 100 computers

80-83: ARPANET and MILNET split, 85-86: NSF builds NSFNET as backbone, links 6 Superco

mputer centers, 1.5 Mbps, 10,000 computers 87-90: link regional networks, NSI (NASA), ESNet(DOE),

DARTnet, TWBNet (DARPA), 100,000 computers 90-92: NSFNET moves to 45 Mbps, 16 mid-level networks 94: NSF backbone dismantled, multiple private backbones Today: backbones run at 2.5 / 10 Gbps, 10s millions comp

uters in 150 countries

12

Growth of the Internet

Number of Hosts on the Internet:

Aug. 1981 213

Oct. 1984 1,024

Dec. 1987 28,174

Oct. 1990 313,000

Oct. 1993 2,056,000

Apr. 1995 5,706,000

Jul. 1997 19,540,000

Jul. 2000 93,047,7851

10

100

1000

10000

100000

1000000

10000000

100000000

1981

1983

1985

1987

1989

1991

1993

1995

1997

1999

13

Recent Growth (1991-2000)

14

Internet 发展规模和趋势

Internet 的发展速度- 是历史上发展最快的一种技术- 以商业化后达到 5000 万用户为例

• 电视用了 13 年,收音机用了 38 年,电话更长• Internet 从商业化后达到 5000 万用户用了 4

年时间 Internet 正在以超过摩尔定理的速度发展

15

网络时代的三大基本定律

摩尔定律摩尔定律 ::CPUCPU 性能性能 1818个月翻番个月翻番 ,10,10年年 100100 倍。倍。所有电子系统所有电子系统(包括电子通(包括电子通信系统,计算信系统,计算机)都适用机)都适用

摩尔定律摩尔定律 ::CPUCPU 性能性能 1818个月翻番个月翻番 ,10,10年年 100100 倍。倍。所有电子系统所有电子系统(包括电子通(包括电子通信系统,计算信系统,计算机)都适用机)都适用

光纤定律光纤定律::超摩尔定律超摩尔定律,,骨干网带宽骨干网带宽 99个月个月翻番,翻番, 1100 年年 1000010000 倍倍。。带宽需求呈带宽需求呈超高速增长的超高速增长的趋势趋势

光纤定律光纤定律::超摩尔定律超摩尔定律,,骨干网带宽骨干网带宽 99个月个月翻番,翻番, 1100 年年 1000010000 倍倍。。带宽需求呈带宽需求呈超高速增长的超高速增长的趋势趋势

迈特卡尔夫定迈特卡尔夫定律律 :: 联网定律联网定律,,网络价值随用户网络价值随用户数平方成正比。数平方成正比。未联网设备增加未联网设备增加NN 倍,效率增加倍,效率增加NN 倍。倍。联网设备联网设备增加增加 NN 倍,效倍,效率增加率增加 NN22 倍倍

迈特卡尔夫定迈特卡尔夫定律律 :: 联网定律联网定律,,网络价值随用户网络价值随用户数平方成正比。数平方成正比。未联网设备增加未联网设备增加NN 倍,效率增加倍,效率增加NN 倍。倍。联网设备联网设备增加增加 NN 倍,效倍,效率增加率增加 NN22 倍倍

16

网络带宽与 CPU 性能

17

光纤容量

18

高水平大容量光纤传输试验系统

容量 光纤长度 特点 研制单位

3Tb/s 40km 用 T-EDFA NTT(160Gb/s X 19 CH OTDM/WDM) (DSF-0=1535nm) 用 DSF 光纤 (NZDSF)

PD1-1-----------------------------------------------------------------------------------------------------------------------------------------1.02Tb/s 1000km 0.4b/s/Hz ,用 SMF 光纤 CNET(20Gb/s x 51 CH WDM) (SMF 环测 ) 101km 放大器间距

PD4-1-----------------------------------------------------------------------------------------------------------------------------------------1Tb/s 342km 用 True Wave 光纤 Lucent(40Gb/s x 25 CH) (True Wave 光纤 ) 85 km 放大器间距 PD7-1-----------------------------------------------------------------------------------------------------------------------------------------750Gb/s 2000km 采用 C 波段和 L 波段 Tyco(5.3Gb/s x 50 CH,10Gb/s x 8CH) ( 纯 Si 光纤 +NZDSF 环测 ) 纯 Si 光纤

PD16-1-----------------------------------------------------------------------------------------------------------------------------------------640Gb/s 7200km 0.33b/s/Hz Tyco(10Gb/s x 64 CH) (NZDSF 环测 ) PD2-1-----------------------------------------------------------------------------------------------------------------------------------------490Gb/s 335.2KM 采用拉曼放大 +EDFA 混合 Lucent(10Gb/s x 49 CH) (ZDSF 环测 ) 0 色散光纤 (67km)+NZDSF(17km)PD8-1-----------------------------------------------------------------------------------------------------------------------------------------340Gb/s 6380km 实线试验 Alcatel(10Gb/s x 34 CH WDM) (NZDSF) 50GHz Spacing PD18-1----------------------------------------------------------------------------------------------------------------------------------------- 80Gb/s 172km Soliton Chalmer(10Gb/s x 8 CH OTDM) (DSF 0=1547nm) 已敷设的光纤 PD6-1

19

Data (Still) Overtaking Voice

0019961996 19971997 19981998 19991999 20002000 20012001 20022002

2020

4040

6060

8080

100100

120120

140140

160160

180180

RelativeRelativeCapacityCapacity

(%)(%)

Voice

Data

Source: MCI (Vint Cerf)Source: MCI (Vint Cerf)

International data traffic already exceeds international voice from Australia and Scandinavia.

20

200020001998199819961996

IP (Still) Conquering Data

All Other

IPX

TCP/IP

Traffic RatiosTraffic Ratios

Source: Gartner 1997Source: Gartner 1997

100%100%90%90%80%80%70%70%60%60%50%50%40%40%30%30%20%20%10%10%

0%0%

21

Relative Relative UserUser

PopulationPopulation

Multimedia

Dynamic WWW

Static WWW

FTP and Telnet

E-Mail and News

Other

8%8%

17%17%

39%39%

27%27%

7%7%2%2%

13%13%

18%18%

23%23%

23%23%

16%16%

7%7%

14%14%

17%17%

12%12%

15%15%

28%28%

14%14%

Internet (Still) Going Interactive

To Transactional Pages (Red) andTo Transactional Pages (Red) andAudio/Video Content (Purple)Audio/Video Content (Purple)

100%100%

80%80%

60%60%

40%40%

20%20%

0%0%

200020001998199819961996Source: The Yankee Group, 1996Source: The Yankee Group, 1996

22

Apps (Always) Driving Capacity

Simple Video, MultimediaSimple Video, Multimedia

Browsing, PCM VoiceBrowsing, PCM Voice

IP, PCS, E-Mail, IP, PCS, E-Mail, File TransferFile Transfer

PagingPaging

Video Conferencing, MPEG1 NTSC VideoVideo Conferencing, MPEG1 NTSC Video

Telnet, VoIPTelnet, VoIP

ISDN, ISDN, Frame RelayFrame Relay

ATM/POSATM/POS

T3/E3T3/E3

T1/E1T1/E1

New ModemNew Modem

Wireless WANWireless WAN

Old ModemOld Modem

.004.004

.0192.0192

.0288.0288

.128.128

1.51.5

33

155155

Mb/sMb/s Minimum Bandwidth for Minimum Bandwidth for Application per UserApplication per User

Virtual Reality, Medical ImagingVirtual Reality, Medical Imaging

23

Data/Voice/Video Transport Convergence

Internet

24

高速信息网络的发展方向:通信与计算聚合

通信和计算技术的聚合- 改变了各自的原有特征

高速信息网络体系结构的发展趋势- 分层结构;分布控制、管理和安全机制

分层结构- 比特路层- 服务层- 应用层

25

高速信息网络的体系结构

比特路层- 主干网传输技术: SDH/SONET ,光纤- 主干网交换技术: IP over SDH 或光纤, GbE ,支持 IPv6

- 端系统接入技术: LAN ; ADSL 、 FTTH 、 HFC

服务层(支撑技术)- 全球统一的地址、域名;安全的系统管理和访问控制- Browser/Server 计算模式,支持 Data, Voice, Video

- 以 Java 为代表的网络编程语言 应用层(用户功能)

- 用户-用户(立即响应,可适当延迟)- 用户-服务器(立即响应,可适当延迟)

26

ATMATM

SDH/SONETSDH/SONET

IPIP

OpticalOptical

IP Transport Alternatives

B-ISDNB-ISDNIP over IP over

ATMATMIP over IP over

SDH/SONETSDH/SONETIP over IP over OpticalOptical

Long-Term WinnersLong-Term Winners

IPIP

ATMATM

OpticalOptical

IPIP

SDH/SONETSDH/SONET

OpticalOptical

IPIP

OpticalOptical

Multiplexing, Protection, and Management at Every Layer.Multiplexing, Protection, and Management at Every Layer.

Eliminating Layers Lowers Costs.Eliminating Layers Lowers Costs.

27

Who is Who on the Internet ?

Internet Engineering Task Force (IETF): The IETF is the protocol engineering and development arm of the Internet. Subdivided into many working groups, which specify Request For Comments or RFCs.

IRTF (Internet Research Task Force): The Internet Research Task Force is a composed of a number of focused, long-term and small Research Groups.

Internet Architecture Board (IAB): The IAB is responsible for defining the overall architecture of the Internet, providing guidance and broad direction to the IETF.

The Internet Engineering Steering Group (IESG): The IESG is responsible for technical management of IETF activities and the Internet standards process. Standards. Composed of the Area Directors of the IETF working groups.

28

Internet Standardization Process

All standards of the Internet are published as RFC (Request for Comments). But not all RFCs are Internet Standards !

- available: http://www.ietf.org A typical (but not only) way of standardization is:

- Internet Drafts- RFC- Proposed Standard - Draft Standard (requires 2 working implementation)- Internet Standard (declared by IAB)

David Clark, MIT, 1992: "We reject: kings, presidents, and voting. We believe in: rough consensus and running code.”

29

Services Provided by the Internet

Shared access to computing resources- telnet (1970’s)

Shared access to data/files- FTP, NFS, AFS (1980’s)

Communication medium over which people interact- email (1980’s), on-line chat rooms, instant messaging (1990’s)- audio, video (1990’s)

• replacing telephone network? A medium for information dissemination

- USENET (1980’s)- WWW (1990’s)

• replacing newspaper, magazine?- audio, video (1990’s)

• replacing radio, CD, TV?

30

Today’s Vision

Everything is digital: voice, video, music, pictures

Everything is on-line: bank statement, medical record, books, airline schedule, weather, highway traffic, toaster, refrigerator …

Everyone is connected: doctor, teacher, broker, mother, son, friends, enemies

31

What is Next?

Electronic commerce- virtual enterprise

Internet entertainment- interactive sitcom

World as a small village- community organized according to interests- enhanced understanding among diverse groups

Electronic democracy- little people can voice their opinions to the whole world- bridge the gap between information haves and have no’s

Electronic terrorism- hacker can bring the whole world to its knee

32

Industrial Players

Telephone companies- own long-haul and access communication links,

customers Cable companies

- own access links Wireless/Satellite companies

- alternative communication links Utility companies: power, water, railway

- own right of way to lay down more wires Medium companies

- own content Internet Service Providers Equipment companies

- switches/routers, chips, optics, computers Software companies

33

BackboneISP

ISP

Internet Physical Infrastructure

Residential Access

- Modem- DSL- Cable modem- Satellite- LAN

Enterprise/ISP access, Backbone transmission

T1/T3, DS-1 DS-3OC-3, OC-12ATM vs. SONET, vs.

WDM

Campus networkEthernet, ATM

Internet Service Providersaccess, regional, backbonePoint of Presence (POP)Network Access Point

(NAP)

34

Links for Long Haul Transmission

Types of links- T1/DS1: 1.544 Mbps- T3/DS3: 44.736 Mbps- STS-1/OC-1: 51.850 Mbps- STS-3/OC-3: 155.2 Mbps- STS-12/OC-12: 622.080 Mb

ps- STS-48/OC-48: 2.488 Gbps- STS-192/OC-192: 9.953 Gb

ps Higher levels of services o

ffered commercially- Frame Relay- ATM

PossibilitiesIP over SDH/SONET IP over ATMIP over Frame RelayIP over WDM

35

Internet 的成功经验

有远见的政府不断支持: 1969 - 有风险的企业参与和投入:

- NFS : MCI 、 IBM

- vBNS : MCI ; Abilene: Qwest , CISCO

联合协作的开放式研究: IETF/RFC 教育和科研的示范网络为起点

- 具有实验物理学的研究特点- ARPAnet 、 NSF 、 ANS 、 vBNS

简单实用的技术路线: TCP/IP

36

Research andDevelopment

Commercialization

Partnerships

Privatization

NSFNET

Internet2, Abilene, vBNSAdvanced US Govt Networks

ARPAnetgigabit

testbedsActive

Netswireless

WDM

SprintLinkInternetMCI US Govt

NetworksANS

InteroperableHigh PerformanceResearch &EducationNetworks

21st CenturyNetworking

Quality of Service(QoS)

37

主要内容

网络概述 Internet 的发展和成功经验 计算机网络技术的历史回顾 国际高速计算机网络研究计划 中国高速计算机网络研究计划

38

Outline

The first design for a packet-switched network by Paul Baran in early 60’s

TCP/IP protocol: one realization of the basic principles in Baran’s design

How the Internet looks like today Where it may be moving to

39

Paul Baran’s classical work“On Distributed Communications”

Time: 1960 - 1964 Goal: building a robust communication system

that could survive nuclear attacks Outcome: a packet-switched network

DST Distce Nxt-H

Destination address

data

40

What is in Baran’s Design

A self-adaptive system: hot-potato routing If don’t know better: forwarding packets to all

neighbors Update routing table by observing packets

passing by; old routing entries timeout and deleted

Forward packets ASAP- not necessarily along shortest paths all the time

Learning & adapting to the changing environment

41

What is in Baran’s Design (cont’)

Datagram delivery Each switch makes packet forwarding decision b

ased on its own routing table Each packet is forwarded independently from an

y others Switches keep no state about end nodes

- Not a most efficient network

- Delivery will not be perfect

End systems must tolerate & recover from transmission errors

42

What is in Baran’s Design (cont’)

A distributed system all switch nodes are equal

- eliminating any single point of failure

components may fail, the system must not system robustness through

- adequate physical redundancy

- adaptive routing

Simulation experiment demonstrated that “extremely survivable networks can be built using a moderately low redundancy of connectivity level”—Paul Baran, 1964

43

some less known side of the story...

at the time a number of people in telecommunication industry consider

ed Baran’s proposal “totally preposterous” “they kicked, screamed, grumbled, and worse. Their respo

nse tended to be emotional, often with anger, rarely with humor…”

“outsiders could not possibly understand the complexity of large systems like the telephone network”

44

Different approaches to system reliability

phone system at the time (still true today)- Dumb end nodes, smart network- making each and every network component reliable

• system reliability = component reliability • high component reliability by local redundancy• everything expected to work; failures expected to be e

xtreme exceptions- a human configured, tightly controlled system

Baran proposal- a reliable system built out of simple, unreliable parts- an adaptive system that adjusts itself to changes automati

cally- Smart ends to fix transmission errors

45

One Realization of Baran’s Desing:the Internet

interconnecting heterogeneous subnets two basic functionalities:

- globally unique addresses

- datagram delivery from sources to destinations via dynamic routing

Claim: simple, flexible, scalable, and robust

IP’s view of the world IP

All kinds of subnet technologies

all kinds of applications

all kinds of transport protocols

46

Datagrams as the basic building block: System Simplicity

Each packet carries its own address One routing table serves all traffic An enabler to the explosive growth

- the simpler, the fewer chances to go wrong

- the simpler, the easier to grow

- the requirement of least common network functionality maximizes the number of usable networks

47

Datagrams as the basic building block: Flexibility

“runs over anything”- IP started with ARPANET, PRNET, SATNET; all long g

one

- today IP runs over 100 Mb or Gb/s Ethernet,FDDI, Frame Relay, ATM, SONET, DWDM …

Supports all different applications- used to be telnet, ftp, email only

- now audio, video, web, e-commerce, online-education

What will the future bring? The best bet would be to stay flexible

48

Datagrams as the basic building block: Scalability

To scale the system must be able to gracefully handle

the growth in the total number of end systems the growth in traffic volume the growth in network size

- larger routing tables- More frequent changes

With IP, “the network knows nothing about individual end applications; end applications know nothing about network internals”—Van Jacobson made it possible to aggregate routing table entries according to scaling need

49

Datagrams as the basic building block: Robustness

self-adaptive nature of dynamic routing facilitated the growth- dynamic routing and datagram delivery go hand-in-hand

- periodic routing updates: “are you still there”

- silent assumption: existing parts may fail, new parts may appear any time changes considered the norm rather than exceptions

trades off optimal link usage (e.g. header overhead, update overhead) for system robustness

50

“Unintended consequence” ?

In a casual conversation Noel Chiappa said,[without DoD’s Internet research initiative] “Perhaps we’d have discovered computer networks eventually, but I have no idea when; ... It’s also unclear if we’d have the kind of network we do if it hadn’t been intended for such a use.“A spirit of intense robustness, and the ability to keep going no matter what, has been part of the ‘Internet ethic’ since day one, and it is due in part to the rather severe operation environment for which it was originally intended. This extremely monolithic nature of the Internet is one of the things which is making it hostile to control, and perhaps that is in some part due to the original goals of the network.”

51

“Why a tougher system?”

things do go wrong from time to time, despite all the honest efforts to prevent them- Have a guess on how often network outage happens?

- Get worse as the system grows larger

“What sort of changes would be helpful in next generation networks? Of course higher data rate and lower cost are desirable, but of all parameters I would opt for greater emphasis on robustness.” — Paul Baran, 1977

52

How the Internet looks like today

No longer the same as 20 years ago- A lot bigger

- A lot more users

- A lot more useful, a lot more valuable

- less robust, less adaptive, and less connected ...

Effectively we were out of IPv4 address space some years ago

- most users are connected via Network Address Translator (NAT) now

53

Later comerLater comer

NAT: a feature or a problem?

• “NAT solves the address exhaustion problem, and even brings a benefit of more control, more security”

• NATs broke a number of existing protocols and applications which were built on the assumption of IP address being globally unique

• Lost ability to support new peer-to-peer applications• end-to-end packet delivery path becomes a concatenation of NAT boxes effectiv

ely a virtual circuit

InternetInternet

NAT NAT

NATNAT NAT

NAT

NAT

NAT

NATNAT

54

Facts versus fairy stories…

Over time the original architecture has eroded...- Entropy (delay) that happens to all large systems?

To restore IP architecture: moving to IPv6- fixes the address exhaustion problem

Why IPv6 has not been widely deployed: a “we do not need it” group going around telling fairy stories- NAT lovers: cheaper & easier than moving to v6

- betting against address exhaustion, “IPv4 addresses would last us till 2010”, or even 2020

How soon, really?

55

How Soon?

When do we run out IPv4 addresses?- NAT assures you never "run out", but end up with a

fragmented Internet

If IPv6 needs to be deployed: better sooner than later- With exponential growth of the net, a problem ignored

is twice as hard next year, fixing it is twice as costly

- “Wait & watch for next couple years”: 4 times as hard and costly

56

To wrap up

The datagram-based IP architecture has been an enabler for the net’s explosive growth

The net needs to move to IPv6 quickly to stop the structural erosion and enable future growth- the fact that the Internet has not collapsed yet does not

mean IPv4 is OK and will last

IP6 fixes the address exhaustion problem, but the deployment wont be cheap or easy

57

主要内容

网络概述 Internet 的发展和成功经验 计算机网络技术的历史回顾 国际高速计算机网络研究计划 中国高速计算机网络研究计划

58

国际高速信息网络技术研究计划

1992 年美国政府的“ 国家信息基础设施 NII” 1993 年西方七国的“ 全球信息基础设施 GII” 美国 NII 组成部分“ 高性能计算和通信 HPCC” NGI 和 vBNS Internet 2 和 Abilene TransPAC 、 APAN 、 STAR TAP CANARIE 和 CA* net3

59

60

61

62

63

NGI :美国下一代 Internet 研究计划

美国总统和副总统宣布启动 NGI ( 1996.10.10 ) 保证美国的重要利益

- 保持技术领先,创造更多的就业和市场机会 NGI 的三个主要目标:

- 先进网络技术的实验研究- 下一代网络测试床- 革命性的应用

政府协调:计算机、信息和通信协调办公室 CCIC 可访问的 Web 站点 : www.ccic.gov; www.ngi.gov NGI 的进展:

- NGI 实现计划( 1998 年 2 月)- NGI 概念文章( 1997 年 7 月)

64

NGI 目标 1 :先进网络技术的实验研究

网络工程- 规划和模拟;监视;集成;数据传递;- 网络管理;动态和自适应的网络

服务质量(端到端)- 服务质量体系结构;允许控制,计费和优先权;- 可观察和控制的 API ; Drill Down 技术

安全- 用户用安全和公平的方法服务网络资源;- 优越的网络管理;网络内部的监视;- 游动 / 远程访问;- 公钥基础设施

65

NGI 目标 2 :下一代网络测试床

开发下一代网络测试床,用比现在 Internet 快 100 倍 以上的速度连接至少 100 个大学和国家研究实验室

- 以 1997 年 1.54Mbps 计, 10 个连接点速度达到比现在 Internet 快 1000 倍- 端到端连接速度达到 100Mbps~1Gbps

NGI 目标 2 包括- 高性能连接:开发广域网结构,用 100+Mbps 速度连接 100 个广域点- 下一代网络技术和超高性能连接:开发超高速交换和传输技术,用 1+Gbps 速度连接 1

0 个以上的局域点 主要策略:协调建立一个高性能的协作网络

- 利用现有的网络试验床: vBNS, ESnet, NREN

评价标准:连接点的数量,端到端的性能- 支持目标 1 的研究,支持目标 3 的应用

66

NGI 目标 3 :革命性的网络应用

开发今天 Internet 没有,对国家重要的网络应用- 健康保健:远程医疗、紧急医疗响应支持- 教育:远程教育、数字图书馆- 科学研究:能源、地理系统、气象、生物- 国家安全:高性能全球通信、先进的信息传播- 环境:监测、预测、警告、响应- 政府:传递政府服务和信息给公民和企业- 突发事件:灾难响应、危机管理- 设计和制造:制造工程

主要策略:重点研究基础性应用- 分布式计算应用、协同性应用

67

vBNS Cooperative Agreement

Competitively awarded in April 1995 Established by the NSF in order to

- ensure the availability of high performance networking resources for the US Research & Education community

- foster the advancement of networking technology

NSF contributes: program management and funding MCI contributes: bandwidth, equipment, and

engineering

68

San Francisco

National Center forAtmospheric Research

San DiegoSupercomputer Center

Houston

Denver

Ameritech NAP

Chicago

National Center forSupercomputingApplications

Cleveland

Perryman, MD

Sprint NAP

MFS NAP

PittsburghSupercomputing

Center

Los Angeles

A

Atlanta

ANew York City

vBNS Backbone Network Map

Boston

Washington, DC

Seattle

A

A

C

C

C

C

C

CC

C

C

C

C

C

C

C

C

C

C

C

J

J

Ascend GRF 400

Cisco 7507

Juniper M40

FORE ASX-1000

NAP

A

C

DS-3

OC-3C

OC-12C

OC-48

J

69

San Francisco

National Center forAtmospheric Research

San DiegoSupercomputer Center

Houston

Denver

Chicago

National Center forSupercomputingApplications

Cleveland

Perryman, MDPittsburghSupercomputing

Center

Los Angeles

Atlanta

New York City

vBNS Backbone 3Q99

Boston

Washington, DC

Seattle

vBNS POP

DS-3

OC-3C

OC-12C

OC-48

70

Internet 2

UCAID ( 120 多个大学会员)的一项研究计划University Corporation for Advanced Internet Development

形成大学试验网,开发下一代 Internet 技术和应用- IPv6 , Multicasting , QOS

- 以竞争方式得到 NGI 计划的经费支持 NGI 是政府计划, Internet 2 是大学合作计划

- 相互补充,相互依靠 Internet 2 和 NGI 的合作范围

- NSF 支持的 vBNS

- Internet 2 将建立用于地区连接的 gigaPoP

- Internet 2 的许多网络应用开发由 NGI 支持

72

Internet2 Applications

Deliver qualitative and quantitative improvements in the conduct of:

- Research

- Teaching

- Learning

Require advanced networking

73

Virtual Laboratories

Interactive research and instruction

Real-time access to remote scientific instruments

Images courtesy of theUniversity of Michigan

74

Virtual Laboratories

Real-time access to remote instruments

University of Pittsburgh,Pittsburgh Supercomputing Center

3-D Brain Mapping

75

Digital Libraries

Video and audio

Indiana University

Variations Project

76

Distributed Computation

Multi-site databases

Old Dominion University

Chesapeake Bay Simulation

Image courtesy of Old Dominion University

77

Teleimmersion

Shared virtual reality

University of Illinois at Chicago

Virtual Temporal Bone

Images courtesy Univ of Illinois-

Chicago

78

Abilene

Project announced 14 April 1998 by VP Gore Most advanced and far reaching research and educatio

n network in the world- support advanced research applications

- integrated advanced network services

Developed by UCAID- Qwest, Nortel and Cisco corporate partners

Advanced native IP backbone network available to universities participating in UCAID’s Internet2 project

79

80

Abilene Characteristics

2.4 Gbps (OC48) among gigaPoPs, increasing to 9.6 Gbps (OC192)

Connections at 622 Mbps (OC12) or 155 Mbps (OC3)

IP over Sonet technology Access PoPs very close to almost all of the

anticipated university gigaPoPs

81

Abilene Schedule

Fall 1998: Demonstrated network at member meeting, in pre-production at several universities, connected to Chicago switch for STAR TAP

Janurary 1999: Abilene in service By December 1999: around 65 institutions conne

cted

83

The TransPAC Network

The network is based on a 70 Mbps VBR-nrt ATM international connection between the STAR TAP in Chicago and the APAN Tokyo exchange point.

The underlying ATM service provided by AT&T/KDD. TransPAC provides ATM and IP-layer user services. APAN-TransPAC-vBNS/Canarie provides one of the world’

s largest high-performance research networks and constitutes the premier global testbed for developing next generation network protocols and services.

84

STAR TAP

Science, Technology And Research Transit Access Point”

A persistent infrastructure to facilitate the long-term interconnection of advanced international networking in support of collaborations in research and education

Funded by the NSF CISE Networking and Communications Research and Infrastructure division.

Anchors the international vBNS connections program. http://www.startap.net

85

STAR TAPCommon Interconnect for NGI, Internet2, International High-Performance Networks

86

December1998

http://www.canarie.ca

http://www.canet3.net

[email protected]://Tweetie.canarie.ca/~bstarnTel: +1.613.785.0426

““Canada’s National Optical Internet”Canada’s National Optical Internet”

87

GigaPOP

CA*net 3 National Optical Network

Vancouver

Calgary ReginaWinnipeg

Ottawa

Montreal

Toronto

Halifax

St. John’s

FrederictonCharlottetown

RAN

BCnet

WURCnet SRnet MRnet

ONetRISQ

ACORNOC3

OC3 DS3 OC12

OC48

ChicagoSTAR TAP

CA*net 3

OC12 Teleglobe

88

主要内容

网络概述 Internet 的发展和成功经验 计算机网络技术的历史回顾 国际高速计算机网络研究计划 中国高速计算机网络研究计划

89

中国的高速计算机网络研究计划

国家“九五”、“十五” 科技攻关项目 国家 863 高技术研究发展计划

- 863 计算机主题, 863 通信主题- 中国高速信息示范网络 CAINONET ( 863-300 )

国家 “十五” 863 高技术研究发展计划 中国高速互连网络示范工程 CAINET

- 中科院、上海市、广电部、铁道部联合建设 中国高速计算机互连试验网络 NSFCNET

- 国家自然科学基金会 CERNET 2000 (高速网络)工程

- 面向 21 世纪中国教育振兴计划:现代远程教育工程

90

北 大

清 华GSR12012GSR12008

POS OC-48

GE

DPT Ring

北 航

GSR12008

北 邮

GSR12008

基 金委

GSR12008

中 科 院

GSR12008

CERNET

CSTNET

APAN/STAR

91

中国高速信息示范网中国高速信息示范网IP/SDH/DWDMIP/SDH/DWDM

地区地区 AA

OXCOXC节点节点 A1A1

OADMOADM节点节点 A3A3

OADMOADM节点节点 A2A2

CRCR

SDHSDH

UASUAS

PSTNPSTNADSLADSL

地区地区 BB

OXCOXC节点节点 B1B1

SDHSDH

OADMOADM节点节点 B3B3ADMADM

UASUAS

ERER

LANLAN

OADMOADM节点节点 B2B2

地区地区 CC

OXCOXC节点节点 C1C1

OADMOADM节点节点 C2C2

OADMOADM节点节点 C3C3

OADMOADM节点节点 C4C4

TMTMERER

LANLAN

ERER

LA

LA

NN

LA

LA

NN

……

ERER

CRCRCRCR

中国高速信息示范网中国高速信息示范网 CAINONetCAINONet 示意图示意图

PSTNPSTN

ATMATM设备设备

ATMATM设备设备 TMTM

TMTM

ATMATM设备设备

ATMATM设备设备

ADMADM

92

93

94

机会和挑战并存,挑战大于机会

知识经济:机会和挑战并存,挑战大于机会 Internet 、高速信息网络是国家信息基础设施的主要部

分,具有重要的战略地位 要特别重视网络基础理论和关键技术的研究 优先发展以 Internet 、高速信息网络及其应用为主的我

国信息产业 建立平等开放的市场竞争机制是 Internet 、高速信息网

络及其应用发展的重要条件